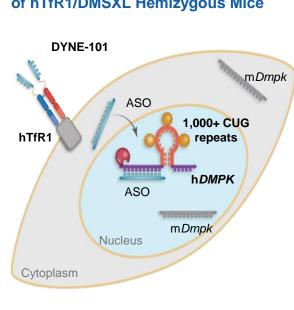


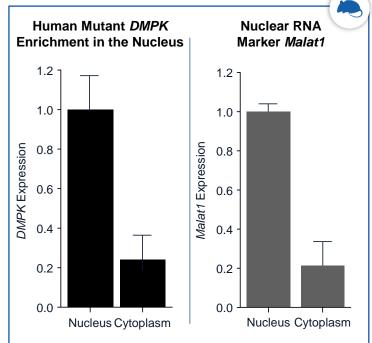
## DYNE-101 TARGETS DMPK EXPRESSION TO CORRECT SPLICING IN KEY MUSCLES FOR DM1 PATHOLOGY AND IS WELL TOLERATED IN CYNOMOLGUS MONKEYS

Stefano Zanotti<sup>1</sup>, Tyler Picariello<sup>1</sup>, Lydia Schlaefke<sup>1</sup>, Ryan Russo<sup>1</sup>, Ann Chang<sup>1</sup>, Scott Hildebrand<sup>1</sup>, John Najim<sup>1</sup>, Qifeng Qiu<sup>1</sup>, Timothy Weeden<sup>1</sup>, John W. Davis II<sup>1</sup>, Zhenzhi Tang<sup>2</sup>, Charles A. Thornton<sup>2</sup>,

1. Dyne Therapeutics Inc., Waltham, MA, USA; 2. University of Rochester Medical Center, Rochester, NY, USA

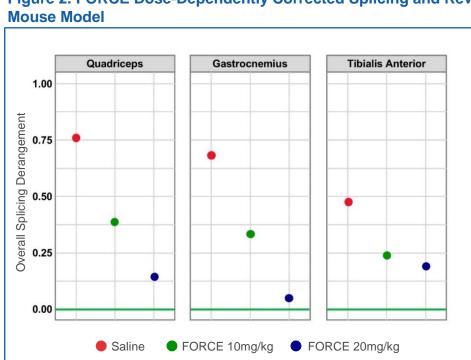
### **BACKGROUND**

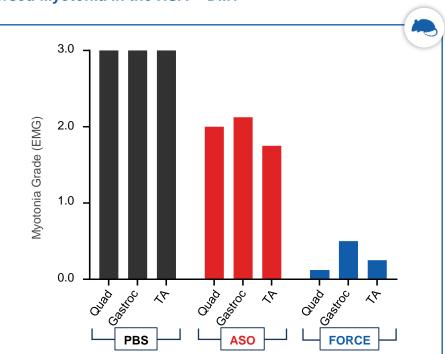

- Myotonic dystrophy Type 1 (DM1) is a rare, debilitating, genetic, progressive neuromuscular disease caused by expansion of CUG repeats in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) RNA1
- DMPK transcripts with CUG repeat expansions are trapped in the nucleus and bind to muscleblind-like splicing factors, sequestering them in toxic nuclear foci,2 ultimately resulting in splicing defects<sup>3</sup>
- Currently, there are no approved therapies for DM14
- DYNE-101 was designed to target the DMPK RNA for RNase-H-mediated degradation by an antisense oligonucleotide (ASO). The ASO is joined by a cleavable valine-citrulline linker to an antigen-binding fragment (Fab) antibody that targets the human transferrin receptor 1 (hTfR1), which is expressed on muscle


#### **METHODS**

- Prior to evaluation of DYNE-101 in hTfR1/DMSXL mice, a mouse-specific FORCE conjugate was evaluated in the human skeletal alpha actin (HSA) long repeat (HSA<sup>LR</sup>) mouse model; HSA<sup>LR</sup> mice have 250 CTG repeats in the 3' UTR of the ACTA1 gene, and have a characteristic myotonic phenotype<sup>5</sup>
  - HSA<sup>LR</sup> mice were administered single intravenous doses of FORCE or an unconjugated ASO targeting ACTA1 RNA. Analyses were performed on day 14.
- hTfR1/DMSXL mice express the hTfR1 and a human DMPK gene with > 1,000 CTG repeats (DMSXL).<sup>2</sup> Hemizygous hTfR1/DMSXL mice exhibit toxic human DMPK trapped in the nuclei of skeletal muscle (gastrocnemius)
- · Homozygous hTfR1/DMSXL mice are a novel model that carries two copies of the human DMPK gene, yielding higher DMPK expression compared with hemizygous DMSXL, and they have a DM1 splicing phenotype
- Fractionation studies were conducted in hTfR1/DMSXL hemizygous mice treated on day 0 with 10 mg/kg DYNE-101 or with phosphate buffered saline (PBS) and analyzed on day 28
- DMPK RNA, foci, and splicing were assessed in hTfR1/DMSXL homozygous mice treated on day 0 and day 7 with 10 mg/kg DYNE-101 or with PBS and analyzed on
- DMPK RNA was assessed in hTfR1/DMSXL hemizygous mice treated on month 0
- (single dose [SD]) or treated on months 0, 1, 2, and 3 (repeat dose [RD]) with 5 mg/kg DYNE-101 or with PBS and analyzed on month 1 (SD) or month 4 (RD)
- DMPK RNA was assessed in male cynomolgus monkeys treated on month 0 (SD) or treated on months 0 and 1 (RD) with 10 mg/kg DYNE-101 or with PBS and analyzed on month 1 (SD) or month 2 (RD)
- A GLP toxicology study for DYNE-101 was performed in male cynomolgus monkeys

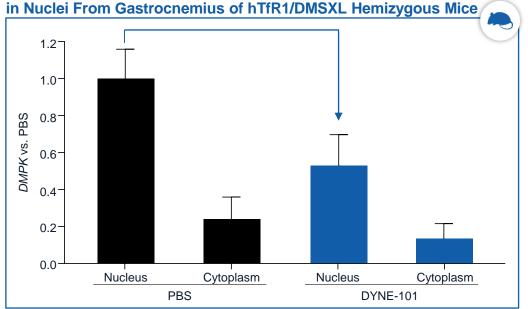
#### RESULTS


Figure 1. Toxic Human DMPK is Trapped in Nuclei of Skeletal Muscle of hTfR1/DMSXL Hemizygous Mice






Mechanism of action of DYNE-101 in human transferrin receptor 1/DMSXL hemizygous mice. DMPK RNA expression by qRT-PCR in nuclear fractions from hTfR1/DMSXL gastrocnemius confirms nuclear localization. Malat1 serves as a nuclear RNA marker. Data are mean ± SD; n = 2. ASO, antisense oligonucleotide; Fab, antigen-binding fragment; hDMPK, human dystrophia myotonica protein kinase; hTfR1, human transferrin receptor 1; mDmpk, murine dystrophia myotonica protein kinase; qRT-PCR, real-time quantitative reverse transcription polymerase chain reaction; SD, standard deviation.


# Figure 2. FORCE Dose-Dependently Corrected Splicing and Reversed Myotonia in the HSALR DM1





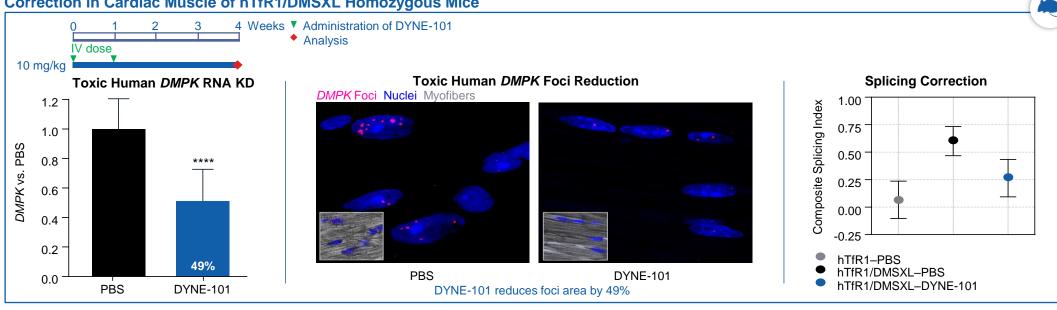

Overall splicing derangement calculated using the mDSI as previously described.<sup>6</sup> WT splicing data (green line) were obtained from Tanner et al. 2021.<sup>6</sup> EMG myotonic discharges were graded by a blinded examiner on a 4-point scale: 0, no myotonia; 1, occasional myotonic discharge in less than 50% of needle insertions; 2, myotonic discharge in greater than 50% of needle insertions; 3, myotonic discharge with nearly every insertion. ASO, antisense oligonucleotide; EMG, electromyography; HSALR, human skeletal alpha actin long repeat; mDSI, mouse DM splicing index; PBS, phosphate buffered saline; WT, wild type.

Figure 3. DYNE-101 Leads to Robust KD of Toxic Human *DMPK* 



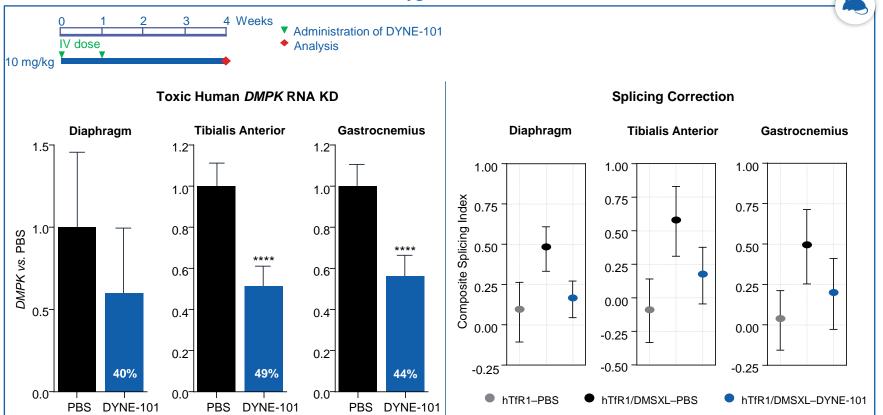
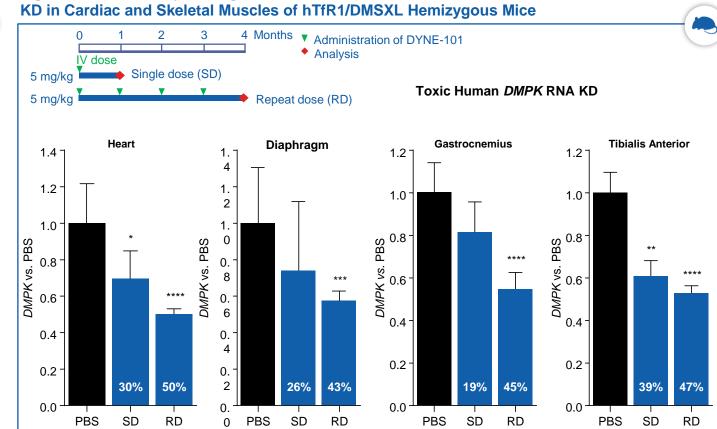

DMPK KD measured by qRT-PCR in nuclear fractions. Data are mean  $\pm$  SD; n = 2. DMPK, dystrophia myotonica protein kinase; hTfR1, human transferrin receptor 1; KD, knockdown; PBS, phosphate buffered saline; qRT-PCR, real-time quantitative reverse transcription polymerase chain reaction;

Figure 4. DYNE-101 Delivers Sustained Toxic Human DMPK RNA KD and Foci Reduction Leading to Splicing Correction in Cardiac Muscle of hTfR1/DMSXL Homozygous Mice




DMPK KD measured by qRT-PCR, representative images from in situ hybridization chain reaction in heart tissues with quantification on FIJI software, composite splicing index<sup>5</sup> of Ldb3 exon (E)11, Mbnl2 exon E6, and Nfix E7 mis-splicing measured by gRT-PCR. Data are mean ± SD; n = 7; \*P < .05; \*\*\*\*P < .0001, by t-test. DMPK, dystrophia myotonica protein kinase; hTfR1, human transferrin receptor 1; IV, intravenous; KD, knockdown; PBS, phosphate buffered saline; qRT-PCR, real-time quantitative reverse transcription polymerase chain reaction; SD, standard deviation.

#### Figure 5. DYNE-101 Delivers Sustained Toxic Human DMPK RNA KD, Leading to Splicing Correction in Skeletal Muscles of hTfR1/DMSXL Homozygous Mice



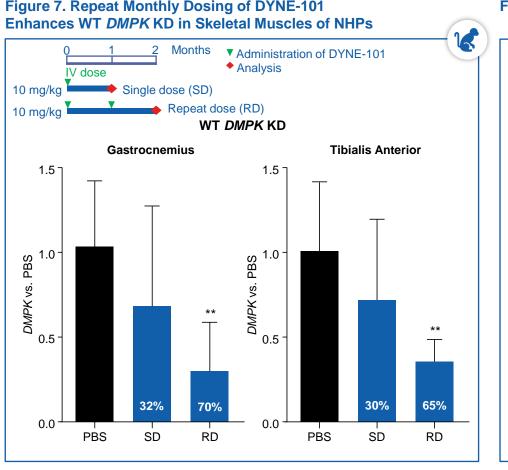
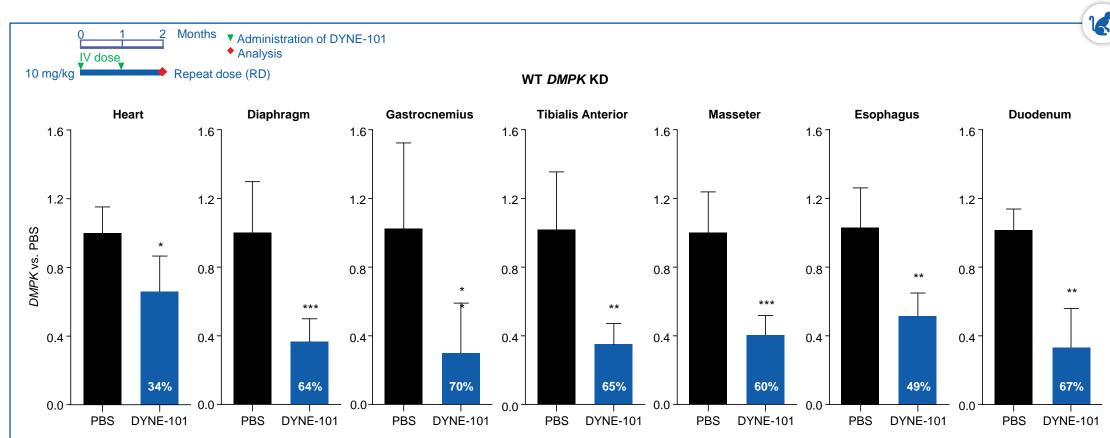

DMPK KD measured by qRT-PCR; composite splicing index<sup>5</sup> of Bin1 E11, Insr E11, Ldb3 E11, Mbnl2 E5, Mbnl2 E6, Nfix E7, and Ttn E313 mis-splicing measured by qRT-PCR. Data are mean ± SD; n = 4–7; P < 0.0001, by t-test. DMPK, dystrophia myotonica protein kinase; hTfR1, human transferrin receptor 1; KD, knockdown; PBS, phosphate buffered saline; qRT-PCR, real-time quantitative reverse transcription polymerase chain reaction; SD, standard deviation.

Figure 6. Low Monthly Dosing of DYNE-101 Enhances Toxic Human DMPK RNA KD in Cardiac and Skeletal Muscles of hTfR1/DMSXL Hemizygous Mice




DMPK KD measured by qRT-PCR. Data are means  $\pm$  standard deviation; n = 4–6 per arm; \*P < 0.05; \*\*P < 0.01; \*\*\*P < 0.001; \*\*\*P < 0.001; \*\*\*\*P < 0.001; \*\*\*P < 0.001; \*\*\*\*P 0.0001, by one-way ANOVA. DMPK, dystrophia myotonica protein kinase; hTfR1, human transferrin receptor 1; IV, intravenous; KD, knockdown; qRT-PCR, real-time quantitative reverse transcription polymerase chain reaction; RD, repeat dose; SD, single dose.

## Figure 7. Repeat Monthly Dosing of DYNE-101



### Figure 8. Repeat Monthly Dosing of DYNE-101 Achieves Significant WT DMPK KD in Cardiac and Skeletal Muscles of NHPs



DMPK KD measured by qRT-PCR. Data are means ± standard deviation; n = 4-6 per arm. \*P < .05; \*\*P < .01; \*\*\*P < .01; \*\*\*P < .05; \*\*P < .01; \*\*\*P < .05; \*\*P RD, repeat dose; qRT-PCR, real-time quantitative reverse transcription polymerase chain reaction; SD, single dose; WT, wild type.

January 2022 Dyne Corporate Presentation.

#### **DYNE-101 Was Well Tolerated in a** 13-Week GLP Toxicology Study in NHPs\*

- No dose limiting toxicity observed up to a maximally feasible dose (dosed once every 3 weeks)
- No changes in cardiac, respiratory, neurologic, or ophthalmic endpoints
- No effect on kidney function
- No effect on liver function
- No effect on coagulation
- NOAEL was identified at the highest dose tested

\*Based on conclusions of report from third-party CRO. NHP, non human primate; NOAEL, No-Observed-Adverse-Effect-Level.

# **CONCLUSIONS**

- In the HSA<sup>LR</sup> mouse model, FORCE demonstrated correction of spliceopathy and improved myotonia to a greater extent than unconjugated ASO
- DYNE-101 demonstrated ability to target toxic human DMPK RNA in the nucleus and correct splicing in cardiac and skeletal muscle of hTfR1/DMSXL mice, as well as reduce DMPK foci
- DYNE-101 low monthly dosing in hTfR1/DMSXL mice and NHPs achieved significant DMPK RNA knockdown in different muscle types affected by DM1 pathology
- DYNE-101 was well-tolerated in a 13-week GLP toxicology study in NHPs
- These data support initiation of the Phase 1/2 ACHIEVE clinical trial of DYNE-101 for the treatment of DM1

# REFERENCES

- 1. Thornton CA. Neurol Clin. 2014;32:705-719.
- 2. Huguet A, et al. PLoS Genet. 2012;8:e1003043.
- 3. Nakamori M. et al. Ann Neurol. 2013:74:862-872.
- 4. Thornton CA, et al. Curr Opin Genet Dev. 2017;44:135–140. 5. Mankodi A. et al. Science. 2000:289:1769-1773.
- 6. Tanner MK, et al. Nucleic Acids Res. 2021;49:2240-2254.

**DISCLOSURE INFORMATION CT**, advisory board (Dyne Therapeutics Inc.); **ZT**, no competing interests; all other authors are employees of Dyne Therapeutics Inc. and may hold Dyne stock and/or stock options.

**ACKNOWLEDGEMENTS** We thank Dr. Geneviève Gourdon for providing the DMSXL mice.

All data were previously presented at the 2022 ASGCT Annual Meeting (Zanotti et al. P.17), 2022 ICNMD Congress (Picariello et al. eP02.06.01), and