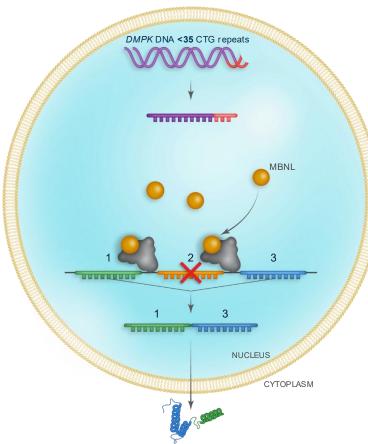


Safety and Efficacy of DYNE-101 in Adults with DM1: Phase 1/2 ACHIEVE Trial Data

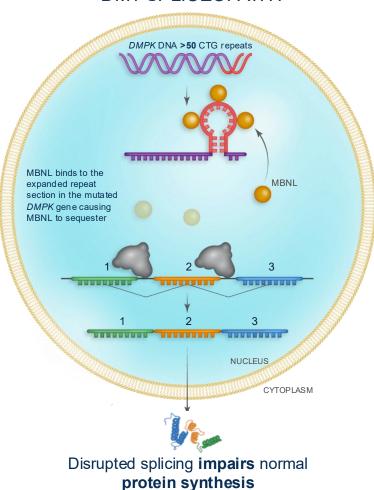
<u>Richard H. Roxburgh</u>,¹ Guillaume Bassez,² Jordi Diaz-Manera,³ Joost Kools,⁴ James B. Lilleker,⁵ Marika Pane,⁶ Benedikt Schoser,⁷ Christopher Turner,⁸ Chris Mix,⁹ Soma Ray,⁹ Baoguang Han,⁹ Wildon Farwell,⁹ Daniel Wolf,⁹ Valeria Sansone¹⁰

¹Neurogenetics Clinic Centre for Brain Research, University of Auckland, Auckland, NZ; ²Institut de Myologie, Paris, France; ³John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle-Upon-Tyne, UK; ⁴Radboud University Medical Center, Nijmegen, Netherlands; ⁵Muscle Disease Unit, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; ⁶Fondazione Policlinico Universitario A. Gemelli, Rome, Italy; ⁷Friedrich-Baur-Institute, Department of Neurology LMU Clinics, Ludwig-Maximilians University, Munich, Germany; ⁸University College London Hospitals, London, UK; ⁹Dyne Therapeutics, Inc., Waltham, MA, USA; ¹⁰Centro Clinico NEMO, University of Milan, Italy

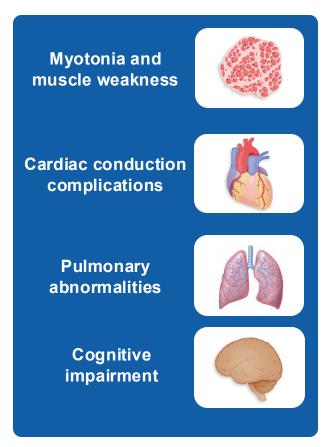


Disclosures

- I have received travel compensation from Dyne to attend this congress.
- DYNE-101 is an investigational medicine being evaluated in the ongoing ACHIEVE trial and has not received approval by FDA, EMA, or any other regulatory authorities

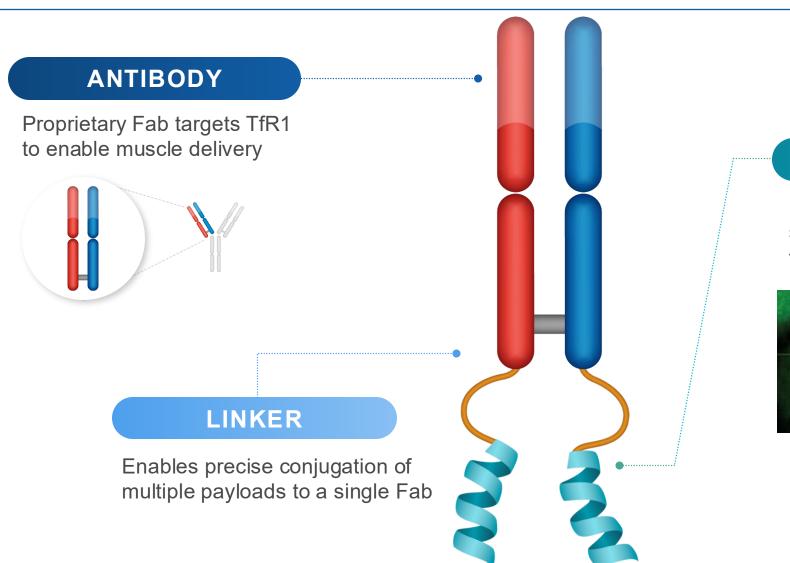

Spliceopathy in DM1 Drives Multisystem Disease Manifestations

NORMAL SPLICING



Normal splicing leads to appropriate protein synthesis

DM1 SPLICEOPATHY



CONSEQUENCES OF SPLICEOPATHY

Abnormal splicing in **multiple tissues** causes symptoms of DM1

FORCETM Platform-based Oligonucleotide Therapeutics for Muscle Diseases

PAYLOAD

Modularity enables rational selection of payload to target the genetic basis of disease

Nuclear localization

Cytoplasmic localization

DYNE-101 Targets Mutant Nuclear *DMPK* RNA

Phase 1/2 Clinical Trial to Evaluate DYNE-101 in Patients with DM1

Population

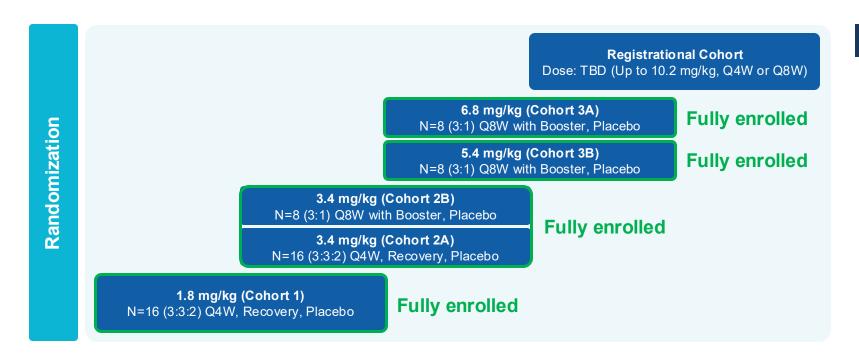
- Adult patients living with DM1
- Ages 18 to 49 years

Primary Endpoints

Safety and tolerability

Additional Endpoints

- Pharmacokinetics
- Change from baseline of:
 - Splicing
 - DMPK RNA expression
 - Multiple assessments of muscle strength and function
 - Patient-reported outcomes, including DM1-ACTIV^c and MDHI


Stages of ACHIEVE

- Multiple ascending dose (MAD): 24 weeks
- Open-label extension (OLE): 24 weeks
- Long-term extension (LTE): 96 weeks

ACHIEVE Trial Design – Multiple Ascending Dose (MAD)

Global, randomized, placebo-controlled study evaluating once monthly or less frequent administration of DYNE-101 in adult patients living with DM1

MAD Study Details

- IV administration of DYNE-101 or placebo every 4 weeks or every 8 weeks
- Muscle biopsies: Baseline,
 12 weeks, 24 weeks
- Patients in MAD study escalated to highest tolerable dose in OLE and LTE

Baseline Participant Characteristics

Mean (SD) or n (%)¹	1.8 mg/kg Q4W (N=16)*	3.4 mg/kg Q4W (N=16)*	5.4 mg/kg Q8W (N=8) [†]
Age (years)	34.6 (10.4)	34.3 (7.6)	39.6 (7.0)
Female n (%)	7 (43.8)	3 (18.8)	5 (62.5)
BMI (kg/m ²)	22.4 (5.3)	23.8 (3.8)	21.7 (2.7)
CASI	0.62 (0.26)	0.67 (0.20)	0.79 (0.14)
CTG Repeats	375 (217)	527 (241)	586 (294)
Video Hand Opening Time (sec) (middle finger)	11.2 (4.3)	8.0 (5.7)	10.1 (6.2)
Quantitative Muscle Testing Total (% predicted)	49.6 (10.9)	47.8 (10.6)	45.8 (16.1)
10-Meter Run/Walk Test (sec) ²	3.5 (0.8)	3.6 (0.7)	4.7 (2.1)
5 Times Sit to Stand (sec)	9.33 (2.02)	10.05 (3.03)	12.28 (5.96)
DM1-ACTIV ^c Total	43 (7)	42 (7)	44 (6)
MDHI Total	25 (20)	25 (20)	16 (9)

DYNE-101 Safety Profile is Favorable to Date

Summary of Treatment-emergent Adverse Events (TEAEs)*1

	Participants with ≥1 TEAE – n (%)						
TEAE Category	1.8 mg/kg Q4W+Rec. N=16	3.4 mg/kg Q4W+Rec. N=16	3.4 mg/kg Q8W N=8	5.4 mg/kg Q8W N=8	6.8 mg/kg Q8W N=8	Overall (N=56)	
Any TEAE	16 (100%)	16 (100%)	8 (100%)	8 (100%)	7 (88%)	55 (98%)	
Any related TEAE	8 (50%)	8 (50%)	2 (25%)	3 (38%)	5 (63%)	26 (46%)	
Any serious TEAE	4 (25%)	0	1 (13%)	0	0	5 (9%)	

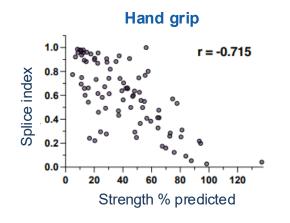
Most TEAEs Were Mild or Moderate in Intensity¹

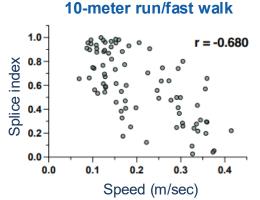
- 6 serious TEAEs unrelated to study drug
 - Atrioventricular block first degree (1)[†]
 - Pneumonia (2 events in same participant)
 - Pulmonary embolism (1)[‡]
 - Hyponatremia (1)
 - Influenza (1)
- Most common TEAEs (≥20% participant incidence) §
 - Nasopharyngitis (32%)
 - Procedural pain (29%)
 - Infusion-related reaction (21%)

Additional Safety Data¹

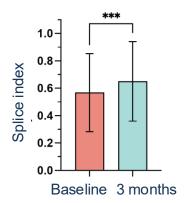
- Liver enzyme elevations have been observed in a minority of participants
 - No impact on liver function (bilirubin or coagulation)
 - Interpretation is complicated by underlying disease and elevated baseline values up to ~2.5 × greater than the upper limit of normal
- No participants have demonstrated persistent related anemia or thrombocytopenia
- There have been no serious related TEAEs, and no TEAEs leading to withdrawal or death

~680 doses administered to date representing over 55 patient-years of follow-up*2



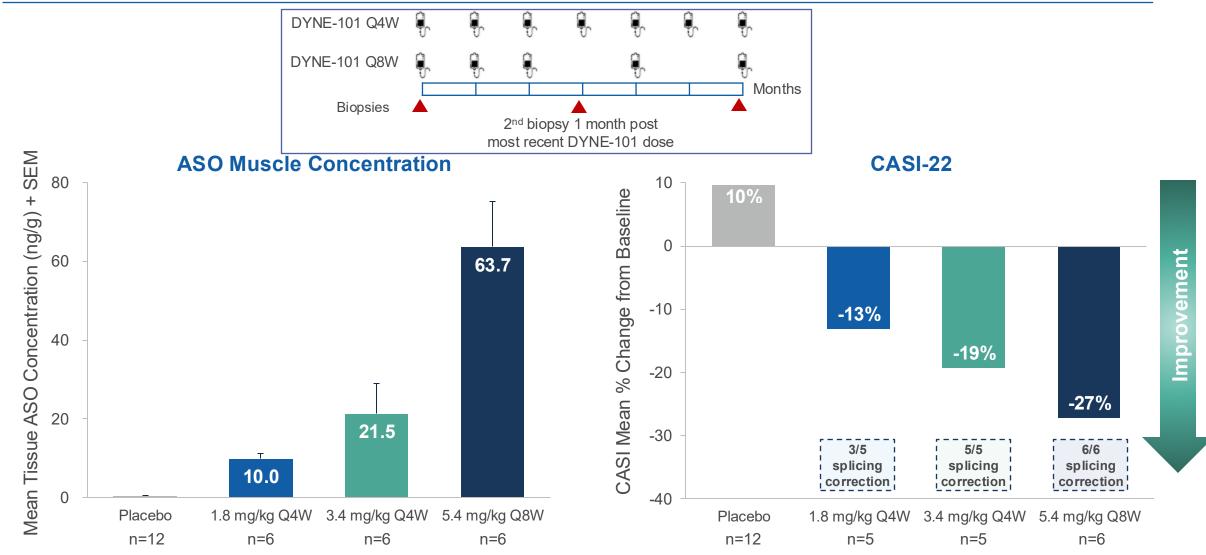

Composite Alternative Splicing Index is a Prognostic Biomarker of Functional Outcomes in DM1

CASI quantifies RNA missplicing across a panel of 22 genes implicated in the pathophysiology of DM1^{1–4}


Role in DM1	Number of Genes		
Muscle weakness and/or altered contraction and relaxation ^{1,2}	8		
Aberrant mRNA splicing ^{1,2}	2		
Insulin resistance ^{1,2}	1		
Undefined, regulated by MBNL ^{1,5}	11		

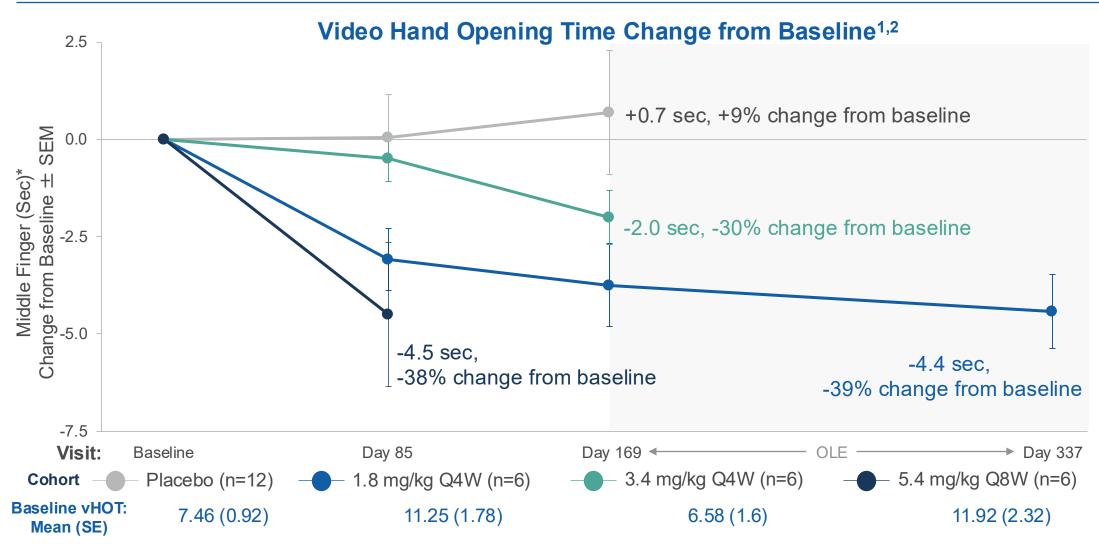
Natural history data support a strong correlation between CASI and muscle function (N=95)⁴

Worsening in CASI is observed in as little as 3 months in the natural history cohort (N=35)*4



^{*}Data represent mean \pm standard deviation; ***p<0.001 by paired t-test.

^{1.} Wang W. 2017. University of Rochester School of Medicine and Dentistry PhD thesis. Available at http://hdl.handle.net/1802/32572 (accessed August 2024); 2. López-Martínez A, et al. *Genes (Basel)*. 2020;11:1109; 3. Mikhail Al, et al. *Trends Mol Med*. 2023;29:512–529; 4. Provenzano M, et al. *bioRxiv*. 2024. Available at: https://www.biorxiv.org/content/10.1101/2024.07.10.602610v1 (accessed August 2024); 5. Gene functions from AmiGO 2. Available at: https://amigo.geneontology.org/amigo (accessed August 2024).

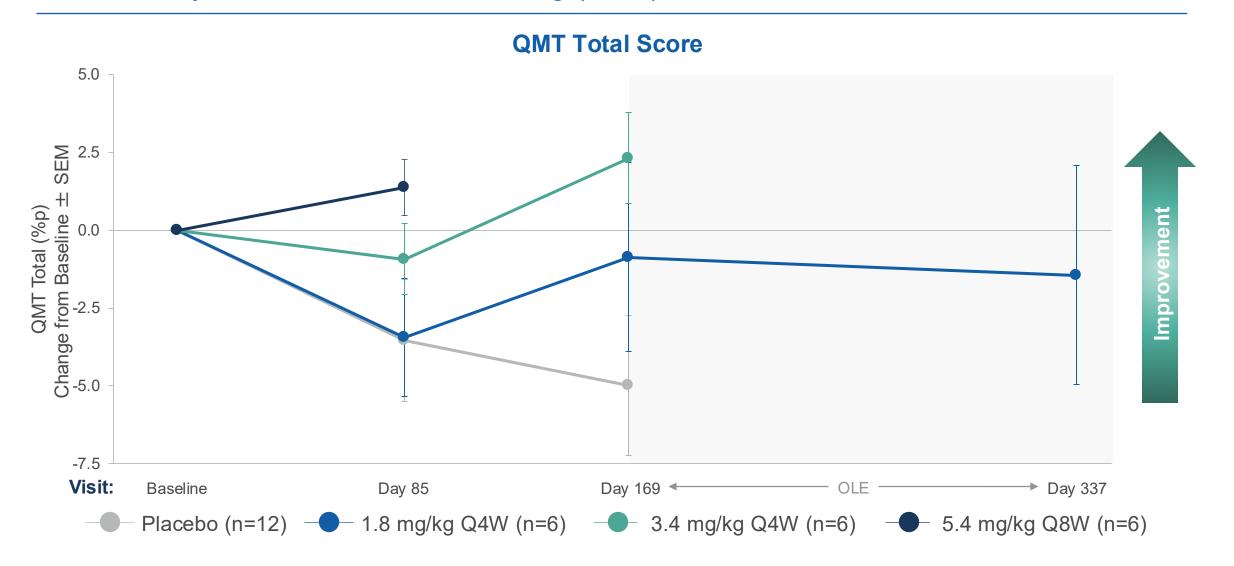

Monthly Dosing of DYNE-101 Demonstrated Dose-dependent Delivery and Consistent Splicing Correction at 3 Months

One post-baseline sample in 3.4 mg/kg Q4W treatment group not included within splicing assay as the sample did not meet QC criteria. SEM, standard error of mean.

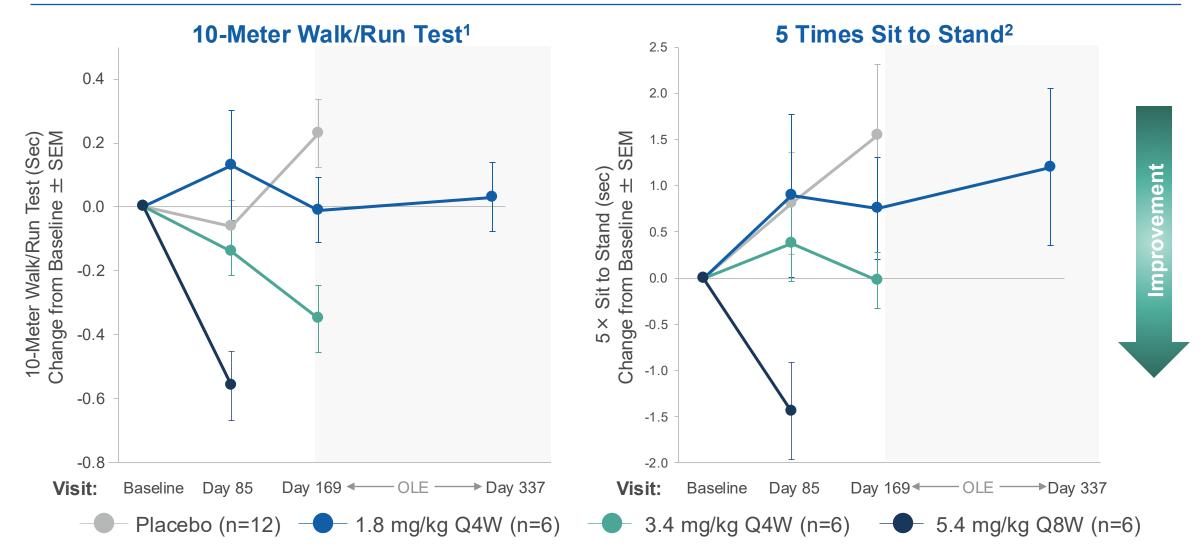
Treatment with DYNE-101 Resulted in Continued Improvement in Functional Myotonia at 6 and 12 Months

^{*}Middle finger (sec) is the average of all myotonia trials for an individual participant in ACHIEVE.

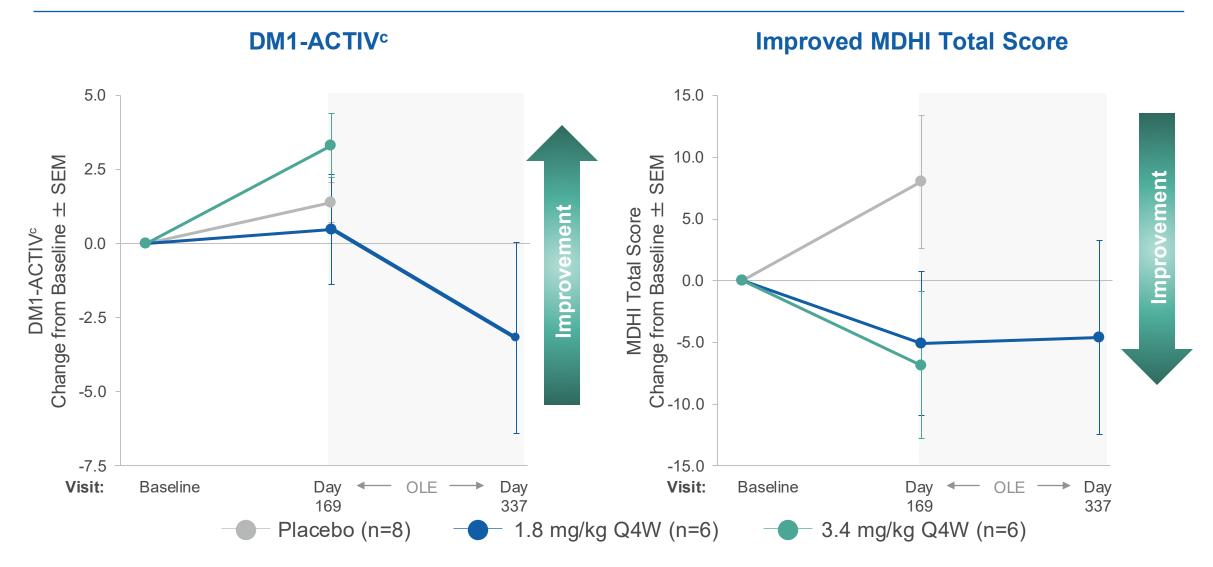
Note: Placebo group includes 12 participants at Day 85 and 8 participants at Day 169. Mean percent change from baseline for placebo group are based on baseline values from 12 patients.


sec. seconds: SE. standard error.

^{1.} Wolf D, et al. Poster presentation at the World Muscle Society Annual Congress, Prague, Czechia, October 8–12, 2024. Poster 221P; 2. Dyne Corporate presentation. September 2024


DYNE-101 Demonstrated Improvement in Muscle Strength

Measured by Quantitative Muscle testing (QMT)



DYNE-101 Demonstrated Early and Sustained Potential Benefit Across Multiple Timed Function Tests

DYNE-101 Demonstrated Clinical Benefit Based on Well-validated PROs

Summary

- DYNE-101 is designed to target mutant nuclear DMPK RNA with the goal of correcting the abnormal splicing to improve the multisystem disease manifestations of DM1^{1,2}
- The Phase 1/2 ACHIEVE trial is an ongoing, randomized, placebo-controlled global trial of DYNE-101 in adults with DM1 aged 18–49 years. In the MAD portion of ACHIEVE:³
 - DYNE-101 was well tolerated
 - DYNE-101 was delivered effectively to skeletal muscle
 - DYNE-101 showed dose-dependent and consistent splicing correction
 - DYNE-101 led to early improvements in multiple functional endpoints
 - DYNE-101 led to improvements in well validated patient-reported outcomes

Acknowledgements

ACHIEVE participants and their families

