

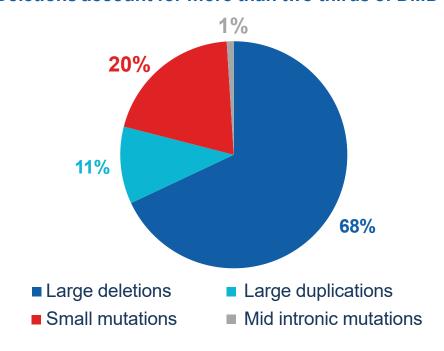
Safety and efficacy from the ongoing Phase 1/2 DELIVER trial of DYNE-251 in males with *DMD* mutations amenable to exon 51 skipping

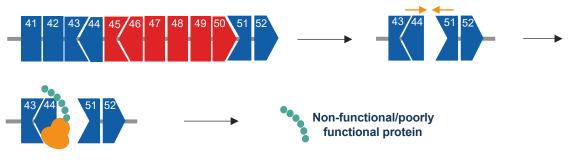
Han Phan¹, Craig Campbell², Nicolas Deconinck³, Liesbeth De Waele⁴, <u>Kevin Flanigan⁵</u>, Michelle Lorentzos⁶, Perry Shieh⁷, Chris Mix⁸, Soma Ray⁸, Dazhe Wang⁸, Ashish Dugar⁸, Douglas Kerr⁸, Maria L Naylor⁸, Michela Guglieri⁹, on behalf of the DELIVER study investigators

¹Rare Disease Research, LLC, Atlanta, GA, USA; ²London Health Sciences Centre, London, Ontario, Canada; ³Neuromuscular Reference Center UZ Gent, Gent, Belgium; ⁴University Hospitals Leuven, Leuven, Belgium; ⁵Nationwide Children's Hospital, Columbus, OH, USA; ⁶Children's Hospital at Westmead, Westmead, New South Wales, Australia; ⁷University of California Los Angeles, Los Angeles, CA, USA; ⁸Dyne Therapeutics, Inc., Waltham, MA, USA; ⁹Royal Victoria Infirmary, Newcastle University, Newcastle-Upon-Tyne, UK

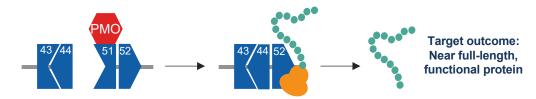
MDA Clinical and Scientific Conference, March 19, 2025

Disclosures


- Clinical trial support from Dyne Therapeutics, Avidity Biosciences, Ultragenyx
- Advisor compensation from Apic Bio, Encoded, BioMarin, Locanabio, Sanofi
- Scientific advisory board for Armatus Bio
- DYNE-251 is an investigational medicine being evaluated in the ongoing DELIVER trial and has not received approval by the FDA, EMA, or any other regulatory authorities

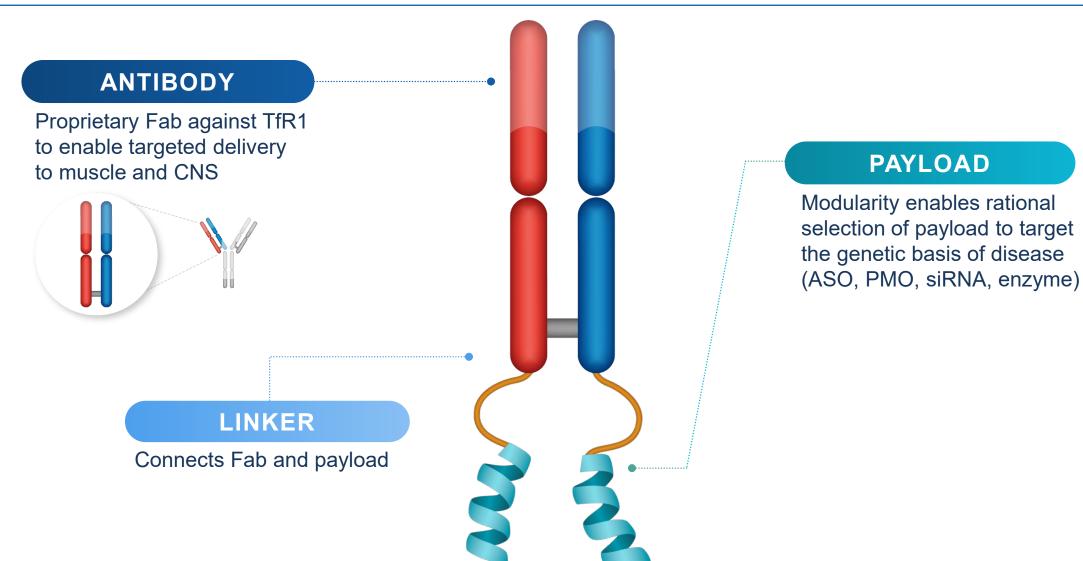

Goal of treatment in DMD is to increase dystrophin expression in key tissues to improve function

- DMD is caused by mutations in the *DMD* gene, which result in greatly reduced production of dystrophin protein, which is essential for muscle structure, function, and preservation^{1–5}
- PMO-induced exon skipping restores the DMD mRNA reading frame, leading to the production of internally shortened, near full-length, functional dystrophin protein^{7,8}

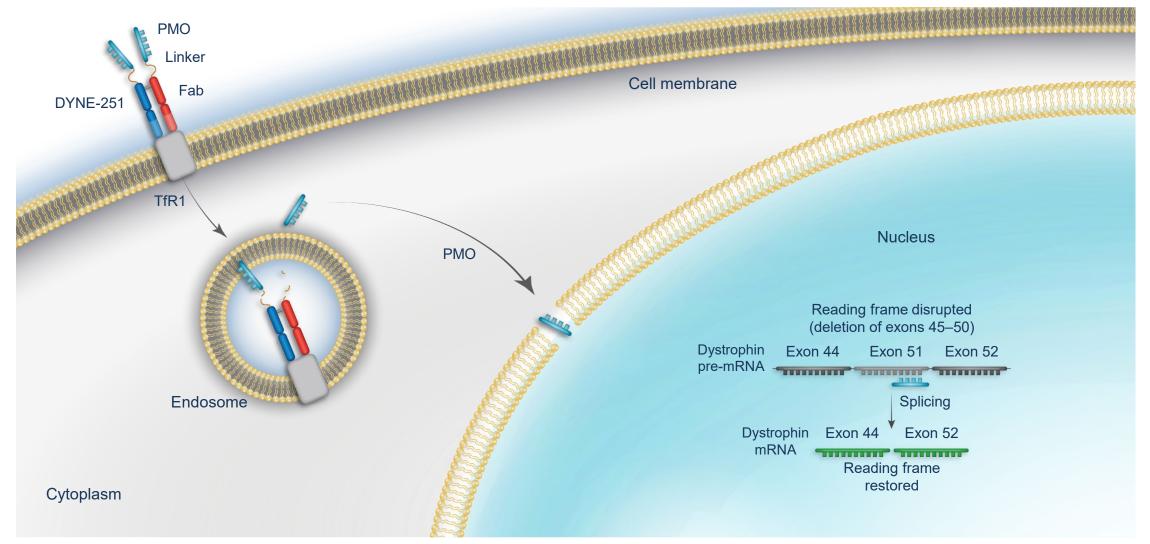

Deletions account for more than two-thirds of DMD cases⁶

Exon 45-50 deletion disrupts reading frame

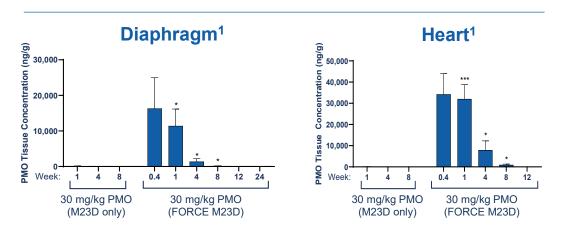
Skipping exon 51 with PMO restores reading frame

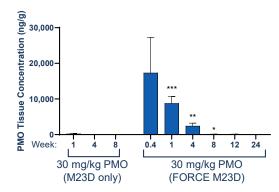

^{1.} Claflin DR, Brooks SV. Am J Physiol Cell Physiol. 2008;294(2):C651–58; 2. Ervasti JM, Campbell KP. J Cell Biol. 1993;122(4):809–23;

^{3.} Hoffman EP, et al. Cell. 1987;51(6):919-28; 4. de Feraudy Y, et al. Ann Neurol. 2021;89(2):280-92; 5. Ohlendieck K, et al. Neurology. 1993;43(4):795-800;

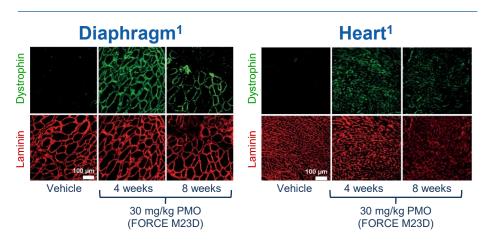

^{6.} Bladen CL, et al. Hum Mutat. 2015;36(4):395-402; 7. Niks EH, Aartsma-Rus A. Expert Opin Biol Ther. 2017;17(2):225-36; 8. Nakamura A, et al. J Hum Genet. 2017;62(10):871-6.

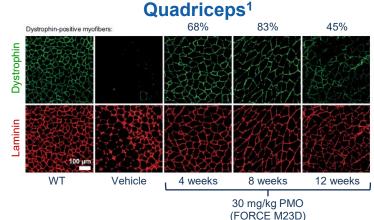
FORCETM platform-based therapeutics for neuromuscular diseases


DYNE-251 is designed to leverage TfR1 to deliver exon 51-skipping PMO to affected tissues in DMD



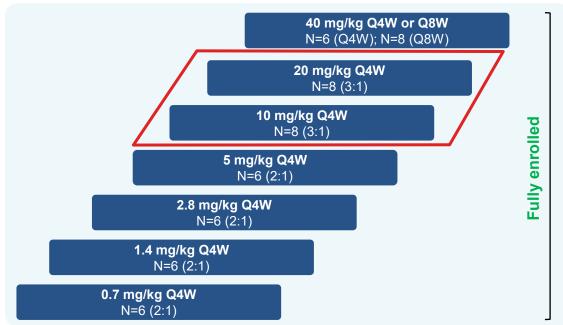
The FORCE platform drives broad PMO delivery and distribution in a *mdx* mouse model


PMO tissue concentration



Quadriceps¹

Dystrophin-positive myofibers



DELIVER trial of DYNE-251 in males with *DMD* mutations amenable to exon 51 skipping

Placebo-controlled period (MAD cohorts)

Transition to 20 mg/kg^{1,2}

Open-label extension (OLE)

Long-term extension (LTE)

Population

- Ages 4–16 years
- · Ambulant and non-ambulant

Primary endpoints

- Safety and tolerability
- Change from baseline in dystrophin levels by western blot

Select additional endpoints

- Pharmacokinetics
- Change from baseline of:
 - Exon 51 skipping levels
 - Muscle tissue PDPF
 - Multiple assessments of muscle function, including NSAA score, SV95C, and certain timed functional tests

Muscle biopsies at baseline and 24 weeks (except for 0.7 mg/kg and 1.4 mg/kg cohorts)

Registrational dose and dose regimen selected at 20 mg/kg Q4W; registrational expansion cohort fully enrolled (N=32, 3:1 randomization)

DELIVER baseline participant characteristics: 10 mg/kg and 20 mg/kg cohorts

Mean (SD) or n (%)	10 mg/kg (N=8)	20 mg/kg (N=8)
Age (years)	6.6 (2.2)	8.1 (2.4)
BMI (kg/m ²)	18.3 (3.2)	18.6 (5.1)
Age of symptom onset (years)	2.8 (1.6)	2.9 (2.0)
Most recent corticosteroid dosing regimen, n (%) ¹ Daily Other	8 (100) 0 (0.0)	8 (100) 0 (0.0)
Duration of corticosteroid treatment (years) ²	1.6 (1.8)	2.0 (2.1)
Prior DMD therapy Eteplirsen Other	1 (12.5) 1 (12.5)	0 (0.0) 2 (25.0)
NSAA total score ³	25.3 (6.40)	15.6 (5.09)
Time to rise from floor (sec) ³	6.3 (5.60)	5.1 (2.28)
Timed 10-meter walk/run (sec) ³	4.6 (1.86)	7.7 (3.84)
SV95C (m/sec) ³	1.9 (0.45)	1.4 (0.47)

DYNE-251 safety profile is consistent with expectations for the DMD population

Summary of treatment-emergent adverse events (TEAEs)¹

	Participants with ≥1 TEAE – n (%)								
TEAE category	0.7 mg/kg Q4W N=6	1.4 mg/kg Q4W N=6	2.8 mg/kg Q4W N=6	5 mg/kg Q4W N=6	10 mg/kg Q4W N=8	20 mg/kg Q4W N=8	40 mg/kg Q8W N=8	40 mg/kg Q4W N=6	Overall N=54
Any TEAE	6 (100)	6 (100)	6 (100)	6 (100)	7 (87.5)	8 (100)	8 (100)	6 (100)	53 (98.1)
Any related TEAE	3 (50.0)	3 (50.0)	2 (33.3)	6 (100)	2 (25.0)	4 (50.0)	2 (25.0)	3 (50.0)	25 (46.3)
Any serious TEAE	0	0	1 (16.7)	0	0	1 (12.5)	2 (25.0)	3 (50.0)	7 (13.0)
Any serious related TEAE	0	0	0	0	0	0	0	2 (33.3)	2 (3.7)
Any TEAE leading to withdrawal from study	0	0	0	0	0	0	0	0	0
Any TEAE leading to death	0	0	0	0	0	0	0	0	0

Potentially related serious TEAEs

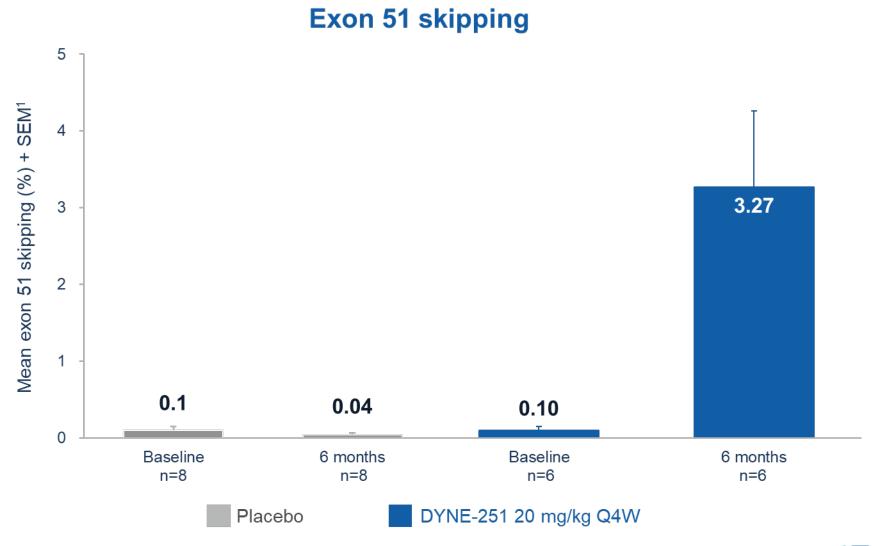
- Acute kidney injury; thrombocytopenia²
- Pancytopenia³

Most frequent TEAEs4

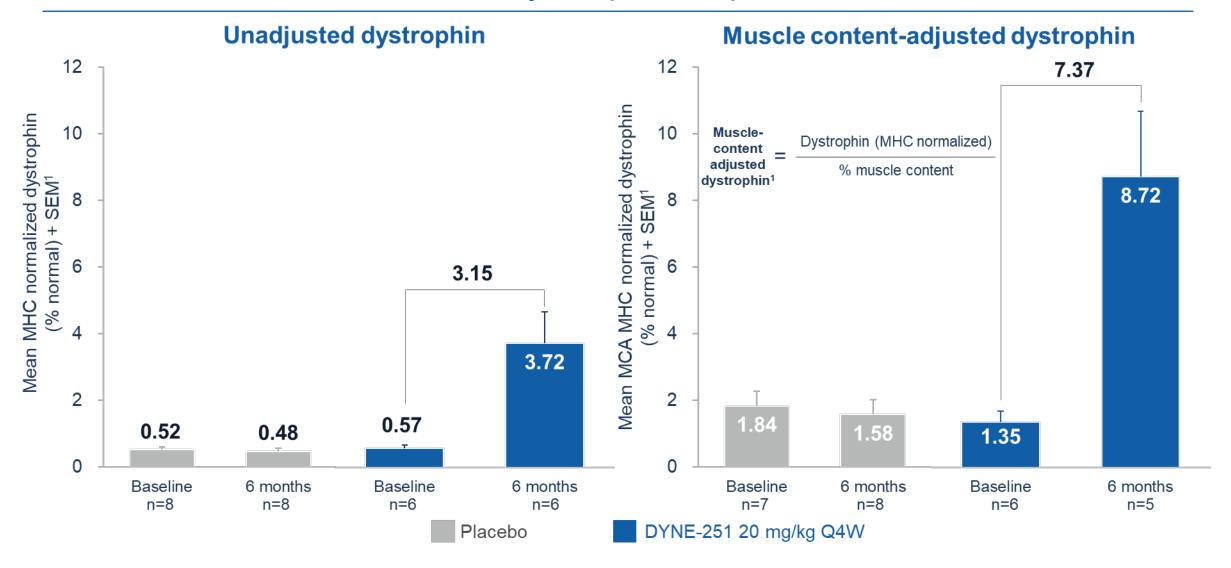
- Pyrexia (48%)
- Headache and vomiting (each 37%)
- Fall (35%)
- Nasopharyngitis (33%)
- Cough (26%)
- Infusion-related reaction⁵ (24%)

Additional safety data

- Other than two participants with serious TEAEs in the 40 mg/kg Q4W cohort:
 - No participants have demonstrated persistent related anemia or thrombocytopenia
 - No participants have demonstrated kidney injury
- No participants have demonstrated clinically meaningful changes in electrolytes, including magnesium


970 doses of study drug administered to date over a period of 77.1 patient-years of follow-up¹ 546 doses of study drug at 20 mg/kg dose level administered to date⁶

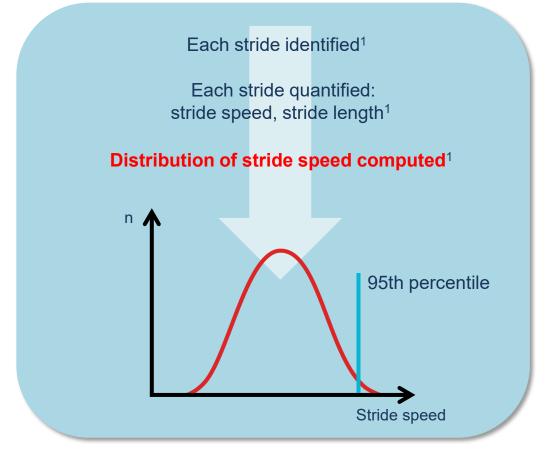
^{1.} Data as of February 7, 2025, all participants, placebo-controlled period, open-label period, long-term extension period; 2. Events have same day of onset in a single participant with a non-serious related TEAE of anemia in the context of fever, hemolysis, diarrhea, and positive blood in stool; together these events are consistent with hemolytic uremic syndrome with a possible infectious etiology; 3. Participant has a history of hemolytic anemia of unidentified etiology; presented with fever and tonsilitis; symptoms resolved without therapeutic intervention; 4. All cohorts combined; preferred terms are reported; 5. All infusion-related reactions have been mild or moderate in intensity; dosing has continued in all participants; 6. Data as of February 21, 2025.


AE, adverse event; Q4W, every 4 weeks; Q8W, every 8 weeks.

Robust exon 51 skipping with 20 mg/kg Q4W DYNE-251

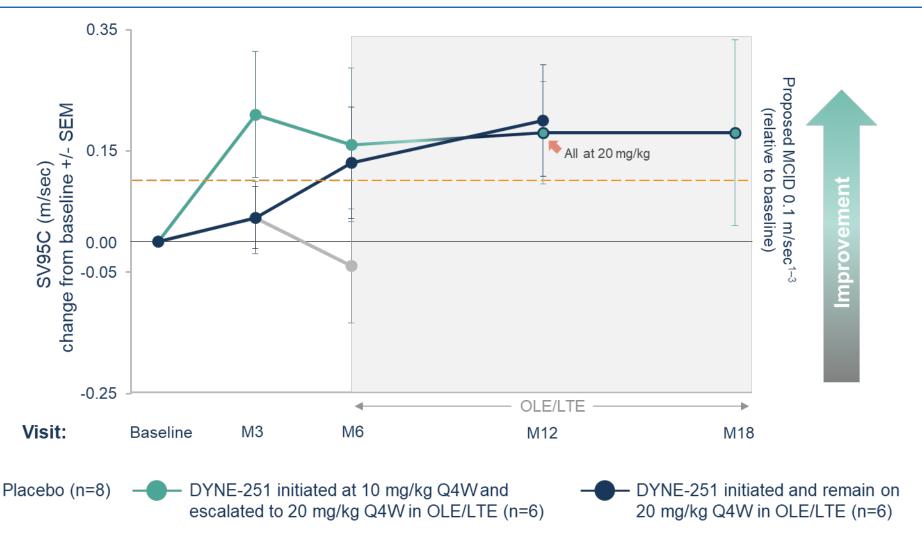
DYNE-251 achieved robust dystrophin expression at 6 months

Stride velocity 95th centile (SV95C) is qualified as a digital primary endpoint by EMA in studies in boys with DMD ≥4 years old¹


SV95C

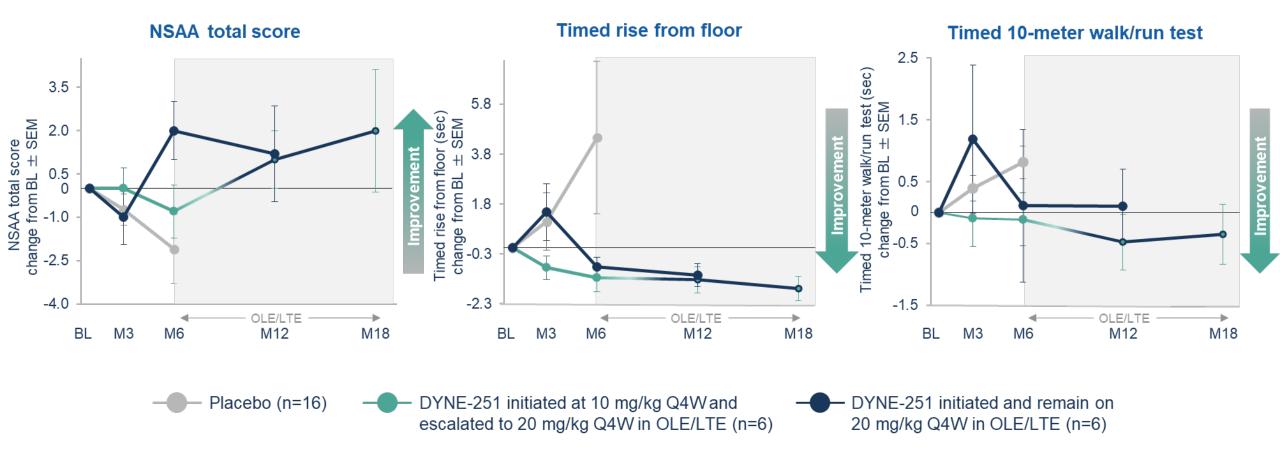
A digital objective endpoint of ambulatory performance in patients' normal daily environment^{1,2}

- Correlated with traditional hospital-based clinical outcomes (6MWT, NSAA, 4SC)^{1,2}
- Demonstrated sensitivity to detect change over time in natural history, steroid-treated patients, and in clinical trials¹
 - SV95C has greater sensitivity vs other function tests,
 i.e. can detect change earlier^{1,3}
- Proposed SV95C MCID = 0.1 m/s (36 m in 6 min) corresponds to 6MWT MCID = 30 m^{1,4,5}
- Continuously collects data over a period of time; minimally impacted by social, familial, or environmental factors^{1,5}



EMA, European Medicines Agency; DMD, Duchenne muscular dystrophy; MCID, minimal clinically important difference; 6MWT, 6-minute walk test; NSAA, North Star Ambulatory Assessment; 4SC, 4-stair climb. 1. EMA. Opinion on SV95C. July 2023. Accessed February 11, 2025. https://www.ema.europa.eu/en/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-primary-endpoint-studies-ambulatory-duchenne-muscular-dystrophy-studies_en.pdf; 2. Servais L, et al. *Nat Med.* 2023;29(10):2391–2; 3. Servais L, et al. *Sci Rep.* 2024;14(1):29681; 4. McDonald CM, et al. *Muscle Nerve.* 2013;48(3):357–68; 5. EMA. Opinion on SV95C. April 2019. Accessed February 11, 2025. https://www.ema.europa.eu/en/documents/scientific-guideline/qualification-opinion-stride-velocity-95th-centile-secondary-endpoint-duchenne-muscular-dystrophy-measured-valid-and-suitable-wearable-device en.pdf.

Early and sustained improvements in SV95C at 20 mg/kg DYNE-251

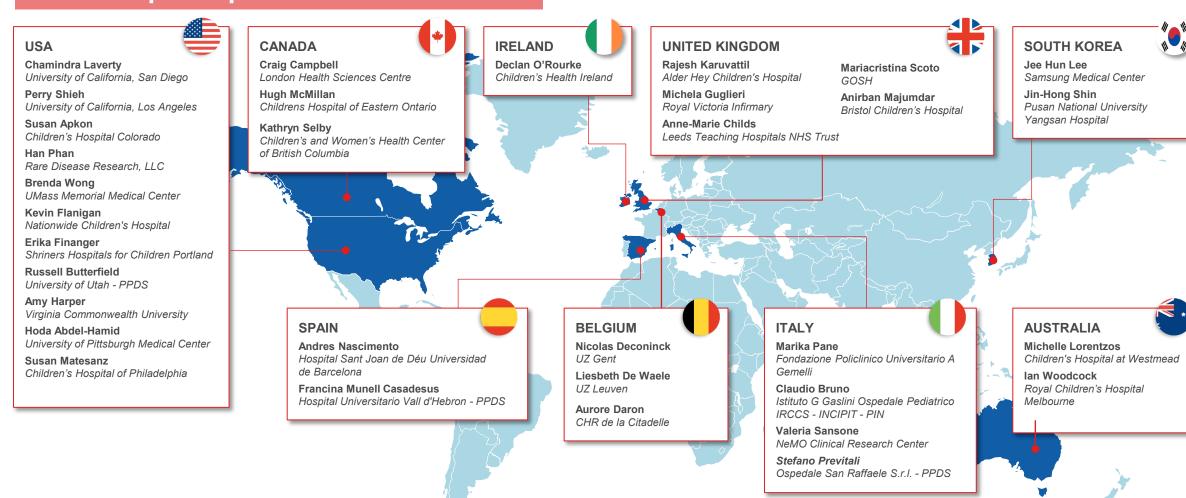

Robust improvement observed vs baseline through 18 months; proposed MCID achieved by 6 months

3 months = 85 days; 6 months = 169 days; 12 months = 337 days; 18 months = 505 days. LTE, long-term extension; m, meter; M, month; MCID, minimal clinically important difference; OLE, open-label extension; Q4W, every 4 weeks; sec, seconds; SEM, standard error of mean; SV95C, stride velocity 95th centile.

Long-term improvements vs baseline observed across multiple functional endpoints through 18 months

Summary

- The safety profile of DYNE-251 is favorable to date, with some participants on therapy for ~2.5 years^a
- Robust expression of near full-length dystrophin following treatment with DYNE-251
- Early and sustained benefit of treatment with DYNE-251 consistently seen on clinical and real-world functional outcomes, including SV95C, NSAA, TTR, and 10MWR, through 18 months
 - Improvement vs baseline in SV95C, a reliable measure of continuous real-world function, demonstrated at the registrational dose level of 20 mg/kg Q4W
 - Proposed MCID for SV95C achieved by 6 months
- The registrational expansion cohort (20 mg/kg Q4W) of DELIVER (N=32) is fully enrolled
 - Data planned for late 2025²



Acknowledgments

E DELIVER

DELIVER participants and their families

