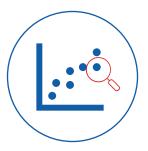


Module 4
How does Duchenne muscular
dystrophy (DMD) progress over time?

Module summary


Variability in DMD and BMD phenotypic expression (severity) relates mainly to the type of mutation and how it affects dystrophin production¹

A goal for disease-modifying treatment in DMD is to enable production of functional dystrophin²

DMD affects skeletal, pulmonary, and cardiac muscle, and the CNS³

While DMD is characterized by progressive muscle damage, cognitive and behavioral abnormalities can also manifest³

Several prognostic indicators of disease progression in DMD have been identified⁴

These include DMD mutation type, DMD genetic modifiers, age at symptom onset, height, weight, and baseline functional tests^{4–6}

Cardiorespiratory complications are a leading cause of death amongst individuals with DMD⁷

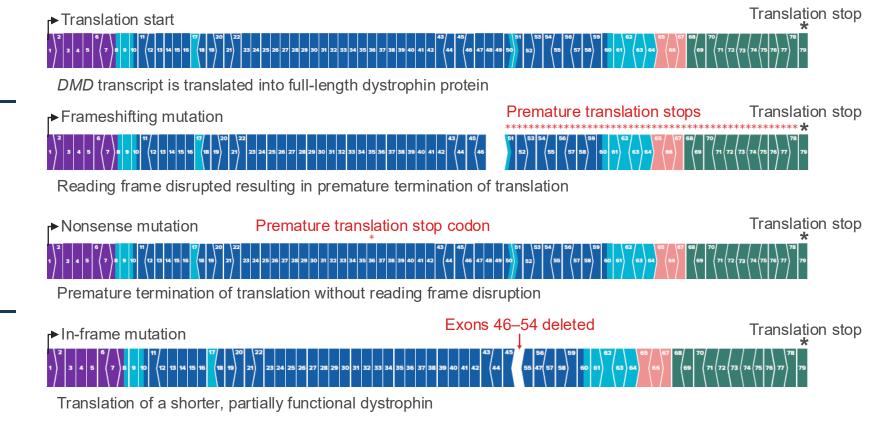
Loss of respiratory muscle strength leads to ineffective cough, need for ventilatory support, and ultimately respiratory failure⁷

Dystrophin deficiency in cardiac muscle manifests as cardiomyopathy, progressing to arrythmias and heart failure over time⁷

Approximately half of individuals with DMD experience neuropsychiatric symptoms⁸

Four of the six dystrophin isoforms are expressed in the CNS, and they have diverse functions in the brain^{8,9}

How does the reading frame rule impact disease severity and symptoms?


The variability in DMD and BMD phenotypic expression relates mainly to the type of mutation and how it affects production of dystrophin^{1,2}

Non-diseased individuals²⁻⁴

 DMD^{2-4}

Severe clinical presentation

BMD^{2–4}
Mild clinical presentation

A goal for disease-modifying treatment in DMD is to enable production of high-quality dystrophin in all affected tissues^{2,5,6}

^{1.} Monaco AP, et al. *Genomics*. 1988;2:90–95; 2. Aartsma-Rus A, et al. *J Med Genet*. 2016;53:145–151; 3. Roberts RG, et al. *Genomics*. 1993;16:536–538; 4. Zhang Y, et al. *Physiol Rev*. 2018;98:1205–1240; 5. Kole R, et al. *Nat Rev Drug Discov*. 2012;11:125–140; 6. Ohlendieck K, Swandulla D. *Pflügers Arch*. 2022;473:1813–1839.

How can exceptions to the reading frame rule lead to variable phenotypes?

There are three instances in which a frameshift mutation results in BMD or a milder DMD* phenotype: 1

In-frame mutations that abolish the extracellular matrix-binding domain (exons 64–70) or all actin-binding domains (exons 2–10 and exons 32–45) result in DMD¹

~10% of mutations in the *DMD* gene do not follow the reading frame rule³

How does DMD affect skeletal, pulmonary, and cardiac muscle, and the central nervous system?

Skeletal muscle

- Motor development delays¹
- Progressive muscle weakness¹
- Muscle fibrosis and fatty infiltration²
- Loss of ambulation¹

Pulmonary

- Loss of dystrophin induces respiratory muscle failure and restrictive lung disease³;
- Decrease in lung volume³
- Loss of ability to ventilate³
- Need for mechanical ventilation³

Cardiac

- Dystrophin deficiency manifests as cardiomyopathy⁴
- Myocardial fibrosis⁴
- Risk of arrhythmias⁴
- Development of clinical heart failure⁴

Central nervous system

- Learning and behavioral issues can be identified early in infancy but are not progressive^{5,6}
- Intellectual disability in 19–35% of individuals⁶
- Depression and anxiety in 17–27% and 24–29% of individuals, respectively⁶

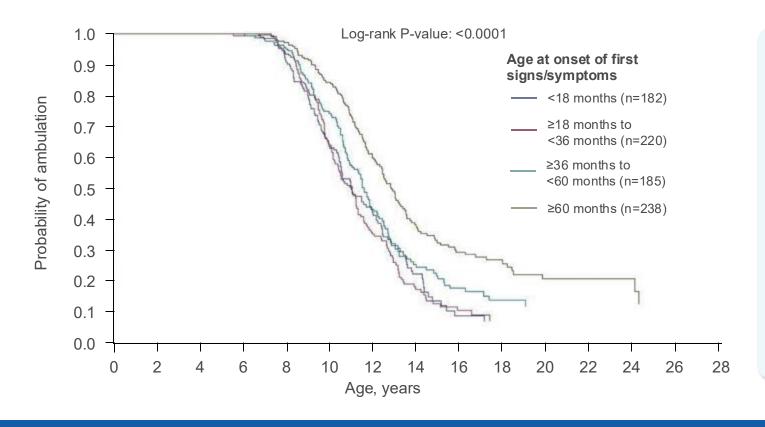
DMD is characterized by progressive skeletal, pulmonary, and cardiac muscle damage; cognitive and behavioral abnormalities can manifest due to a lack of CNS-localized dystrophin isoforms^{1–6*}

What are prognostic indicators of disease progression in DMD?

- A recent literature review found 35 studies presenting evidence of prognostic indicators of disease progression in DMD (measured as loss of independent ambulation)¹
 - Loss of ambulation is a clinically meaningful natural history milestone and age at LoA is an indicator of the severity of disease progression in individuals with DMD²⁻⁴

Prognostic indicator	Effect on disease progression	LoE
Age at onset of symptoms ¹	Later onset → later LoA	2
DMD genetic modifiers ¹	Dependent on modifier	2 and 4
DMD mutation type ¹	Dependent on mutation	2 and 4
Glucocorticoid exposure ¹	Prolonged independent ambulation	2
Disease-modifying treatment*1	Prolonged independent ambulation	2
Baseline functional tests⁴-6 Worse baseline values → faster progression		3 [‡]
Height ¹	Lower height → later LoA [†]	4
Weight ¹	Greater weight → later LoA [†]	4

^{*}Includes exon-skipping therapies and ataluren. †In corticosteroid-treated individuals. ‡This study was not included in the literature review; LoE 3 has been assigned based on the observational nature of this study.


Levels of evidence: (1) systematic review of randomized trials or n-of-1 trials, (2) randomised trial or observational study with dramatic effect, (3) non-randomised controlled cohort/follow-up study, (4) case-series, case-control studies, or historically controlled studies, and (5) mechanism-based reasoning.¹

DMD, Duchenne muscular dystrophy; LoA, loss of ambulation; LoE, level of evidence.

^{1.} Ferizovic N, et al. PLoS One. 2022;17:e0265879; 2. Humbertclaude V, et al. Eur J Pae diatr Neurol. 2012;16:149–160; 3. Henricson EK, et al. Muscle Nerve. 2013;48:55–67; 4. McDonald CM, et al. Muscle Nerve. 2013;48:343–356;

^{5.} Muntoni F, et al. PLoS One. 2019;14:e0221097; 6. Mazzone ES, et al. PLoS One. 2016;11:e0151445.

How does age at sign or symptom onset predict disease progression in DMD?

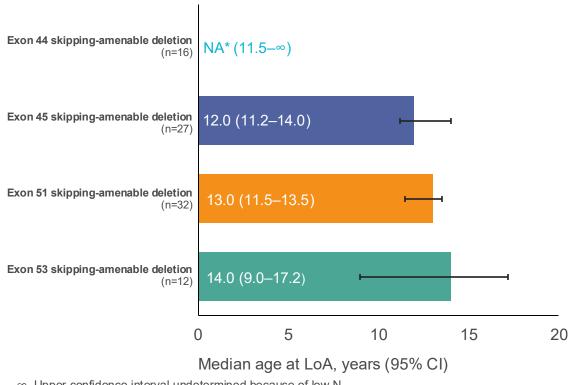
The earlier the onset age at first sign/ symptom, the higher the annual risk of LoA, except in those with onset at <18 months of age (p=0.001).

Age at onset of first signs/symptoms	HR (95% CI)
<18 months	1.52 (1.14–2.02)
≥18 months to <3 years	1.72 (1.31–2.26)
≥3 to <5 years	1.36 (1.02–1.81)
≥5 years	1.00 [reference group]

DMD disease progresses more rapidly in individuals with earlier onset of signs/symptoms

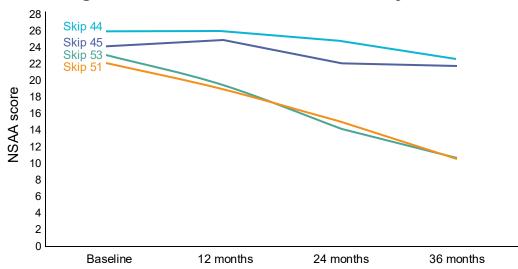
How can genetic modifiers impact the phenotype of the primary disease-causing mutation?

Genetic modifier	Function	Marker	Effect
LTBP4	Regulates TGFβ activation¹	Homozygous IAAM haplotype	Potential for prolonged ambulation compared to homozygous VTTT <i>LTBP4</i> haplotype ²
SPP1 (osteopontin)	Involved in attachment of osteoclasts to bone matrix; upregulates expression of IFN-gamma and IL-12 ³	GT/GG genotype	Potential for reduced limb strength and earlier LoA; biomarker of corticosteroid response ^{4,5}
CD40	Encodes for a co-stimulatory molecule for T-cell polarization ⁶	rs1883832 genotype	Earlier LoA ⁶
ACTN3	Binding and crosslinking of actin thin filaments ⁷	R577X (rs1815739) genotype	Reduced muscle strength, poor 10MWR performance ⁷


Genetic modifiers, in addition to the mutations in the *DMD* gene itself, may influence DMD disease severity and prognosis^{2,4,6,7}

10MWR, 10-meter walk/run test; DMD, Duchenne muscular dystrophy. IFN, interferon; IL, interleukin; LoA, loss of ambulation; LTBP4, latent transforming growth factor-β binding protein 4; SPP1, secreted phosphoprotein; TGFβ, transforming growth factor-β.

^{1.} National Center for Biotechnology Information Gene Library. https://www.ncbi.nlm.nih.gov/gene/8425#summary. Accessed September 24, 2025; 2. Flanigan KM, et al. *Ann Neurol.* 2013;73:481–488; 3. National Center for Biotechnology Information Gene Library. https://www.ncbi.nlm.nih.gov/gene/6696. Accessed September 24, 2025; 4. Pegoraro E, et al. *Neurology* 2011; 76:219–226; 5. Bello L, et al. *Ann Neurol.* 2015;77:684–696; 6. Bello L, et al. *Am J Hum Genet.* 2016;99:1163–1171; 7. Hog arth MW, et al. *Nature Communications.* 2017;8:14143.

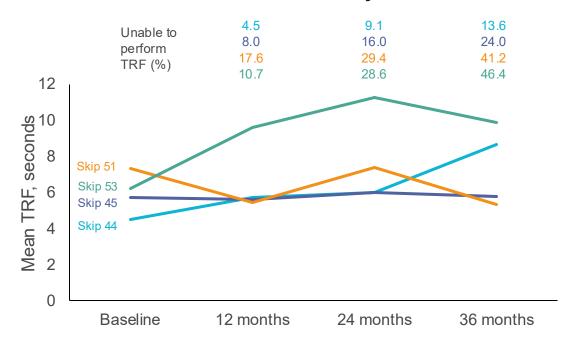

How do genetic mutations affect disease progression in DMD (1 of 2)

Age at loss of ambulation by mutation in GC-treated individuals¹

^{∞,} Upper confidence interval undetermined because of low N.

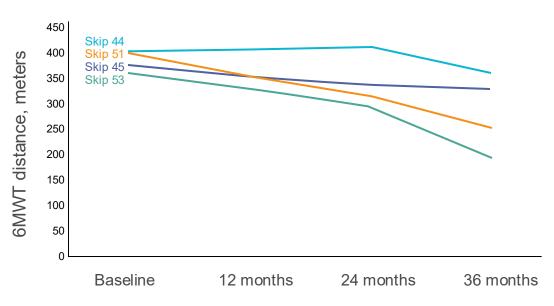
Change in NSAA score over 36 months by mutation^{2*}

	Char	nge from baseline, mean	(SD)
	12 months	24 months	36 months
Skip 44	0.1 (+4.3)	-1.8 (+7.7)	-3.3 (+7.3)
Skip 45	-1.3 (+6.9)	-2.9 (+7.9)	-2.3 (+9)
Skip 51	-3.5 (+5.0)	-7.9 (+7.8)	-12.6 (+7.9)
Skip 53	-3.2 (+4.9)	-7.8 (+7.4)	-11.4 (+8.9)


Individuals with mutations amenable to exon skip 44 (n=34), skip 45 (n=25), skip 51 (n=19), and skip 53 (n=28).

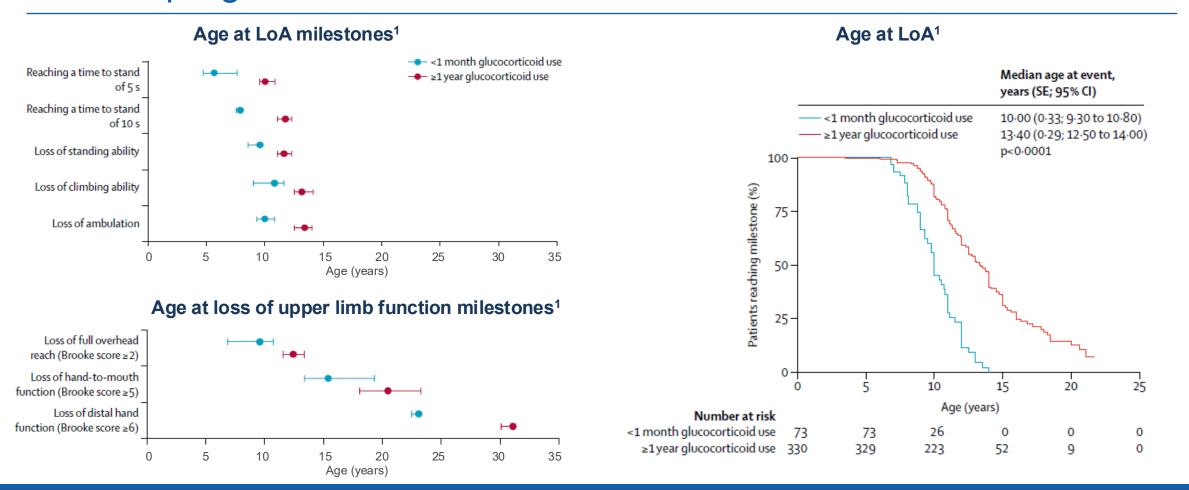
The type of *DMD* mutation affects the trajectory of decline of motor function, with exon 44 skip-amenable deletions predictive of slower disease progression^{1,2}

^{*}Median not calculable as only 4/16 (<50%) had lost ambulation at last follow-up.


How do genetic mutations affect disease progression in DMD (2 of 2)

Mean TRF over 36 months by mutation

Individuals with mutations amenable to exon skip 44 (n=22), 45 (n=25), 51 (n=17), or 53 (n=28); all on steroid treatment.


Change in 6MWT distance over 36 months by mutation

Individuals with mutations amenable to exon skip 44 (n=24), skip 45 (n=27), skip 51 (n=18), and skip 53 (n=28), all on steroid treatment.

The type of *DMD* mutation affects the trajectory of decline of motor function, with exon 44 skip-amenable deletions predictive of slower disease progression

How do corticosteroids (a mainstay of DMD treatment) impact disease progression?

Corticosteroids delay LoA, improve muscle function, preserve upper limb and respiratory function, and prolong survival in individuals with DMD^{1–3}

Beyond corticosteroids, what therapeutic approaches are approved for the treatment of DMD?

Dystrophin-producing therapeutic approaches

Exon-skipping therapies (naked PMOs)

- Eteplirsen* US: for treatment of individuals with mutations amenable to exon 51 skipping¹
- Golodirsen* and viltolarsen* –
 US: for treatment of individuals with mutations
 amenable to exon 53 skipping^{2,3}
- Casimersen* US: for treatment of individuals with mutations amenable to exon 45 skipping⁴

*US approval based on an increase in dystrophin production in skeletal muscle observed in some patients. Additional studies ongoing to verify clinical benefit^{1–4}

AAV-mediated micro-dystrophin gene therapy

Delandistrogene moxeparvovec – US: for treatment of individuals with DMD aged 4 years and older with no deletion in exon 8 and/or exon 9:5

- Who are ambulatory and have a confirmed mutation in the *DMD* gene
- Who are non-ambulatory and have a confirmed mutation in the DMD gene. Approval in non-ambulatory patients was based on expression of micro-dystrophin protein in muscle biopsies. Additional studies are ongoing to verify clinical benefit*

Histone deacetylase inhibitor

Givinostat – US: for treatment of individuals with DMD aged 6 years and older6

EU: for treatment of ambulant individuals with DMD aged 6 years and older, and with concomitant corticosteroids Conditional approval has been granted in Europe; further evidence on this medicine is awaited, and new information will be reviewed at least every year⁷

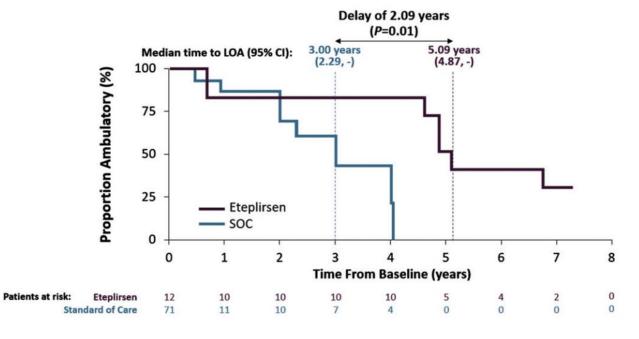
^{*}At the time of approval of this module, Sarepta is supplying delandistrogene moxeparvovec only for ambulatory, but not non-ambulatory, patients; contact your local regulator for further information.

AAV, adeno-associated virus; DMD, Duchenne muscular dystrophy; EU, European Union; PMO, phosphorodiamidate morpholino oligomer; US, United States.

^{1.} EXONDYS 51 Prescribing Information. https://www.exondys51.com/pi; 2. VYONDYS 53 Prescribing Information. https://www.vyondys53.com/PI; 3. VILTEPSO Prescribing Information. https://www.viltepso.com/prescribing-information.

^{4.} AMONDYS 45 Prescribing Information. https://www.amondys45.com/pi; 5. ELEVIDYS Prescribing Information. www.elevidys.com/pi; 6. DUVYZAT Prescribing Information. https://itftherapeutics.com/documents/PI.pdf;

^{7.} DUVYZAT Summary of Product Characteristics. https://www.ema.europa.eu/en/documents/product-information/duvyzat-epar-product-information_en.pdf. All last accessed August 1, 2025; 8. Sarepta Therapeutics. https://investorrelations.sarepta.com/news-rele ase-s/news-rele ase-details/sarepta-therapeutics-announces-second-quarter-2025-financial. Accessed September 24, 2025.

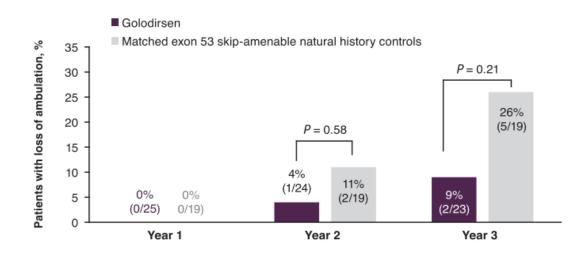

How do exon-skipping therapies (approved in the US) impact ambulation? (1/2)

Phase 4 EVOLVE study (NCT06606340)¹

- Interim analyses of the EVOLVE study comparing eteplirsentreated individuals (N=33) to corticosteroid-treated external controls (N=75) suggest that eteplirsen reduced LoA risk by 62% (95% CI, 20–82, p=0.011)
- Median age at LoA was 15.3 (95% CI, 11.4–15.8) years for eteplirsen-treated individuals, and 11.3 (95% CI, 8.0–12.8) years for controls

Under US Accelerated Approval, based on an increase in dystrophin production in skeletal muscle observed in some patients. Additional studies ongoing to verify clinical benefit.²

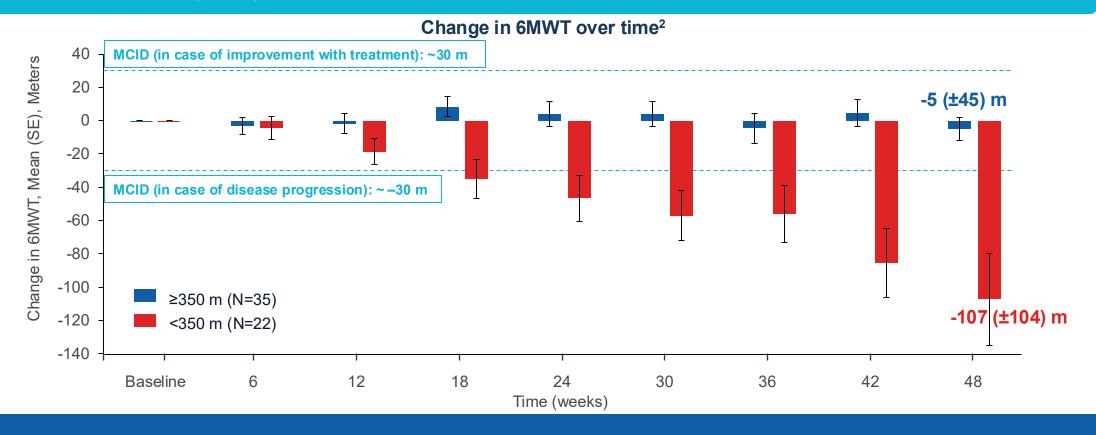
Exon 51-skipping therapy – eteplirsen^{2,3}


How do exon-skipping therapies (approved in the US) impact ambulation? (2/2)

Study 4053-101 (NCT02310906) and 4045-302 (NCT03532542)*1

- Over 6 years of treatment, median delay in time to LoA was ~2.4 years for those treated with golodirsen compared to age- and mutation-matched external controls
- This delay represents a 47.4% risk reduction (HR 0.526, p=0.149)

Under US Accelerated Approval, based on an increase in dystrophin production in skeletal muscle observed in some patients. Additional studies ongoing to verify clinical benefit.²


Exon 53-skipping therapy – golodirsen^{2,3}

Do baseline functional tests predict disease progression? 6MWT

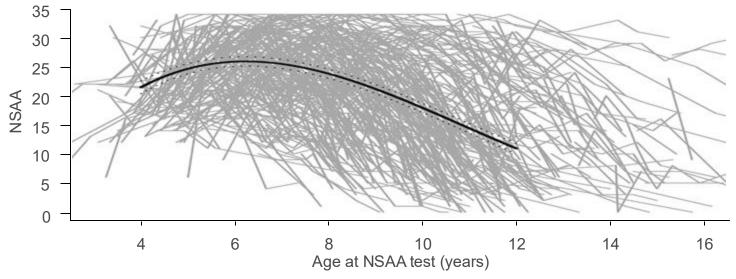
6-minute walk test (6MWT): The distance an individual can walk in 6 minutes.1

Inability to walk 350 m in 6 minutes is predictive of ambulatory decline²

Do baseline functional tests predict disease progression? NSAA total score

North Star Ambulatory Assessment (NSAA): The sum of scores on 17 ordinal tasks, each scored as:

0 = inability to perform task,


1 = modified method of completing task, or

2 = normal activity with no obvious modification.¹

Tasks mostly involve the lower limbs, and do not assess upper limb function.¹

Younger and older individuals may sometimes have the same NSAA total score but are likely to have different care needs, so total score should be interpreted within a trend of decline (eg, loss of ≥3 points in the last 14 months) or stability/improvement.¹ Longitudinal changes in NSAA can be biased by effort.⁴

NSAA total score trajectories²

NSAA total score trajectories for individual patients by age (in grey) and the fitted mean and 95% confidence interval (in black). Each grey line represents NSAA total scores from an individual person with DMD plotted versus age; the population mean, and its 95% confidence bands are shown in black.

MCID for annual change in NSAA: ~3.5 points^{3*}

Improvements in NSAA total score are observed up to 6.3 years of age in individuals with DMD, after which a steady decline occurs at an average of 3 points per year²

^{*}MCID derived using an anchor-based approach using data from the iMDEX natural history study; an annual decline of 30 m in the 6MWT was used as the anchor. 6MWT, 6-minute walk test; DMD, Duchenne muscular dystrophy; MCID, minimum clinically important difference; NSAA, North Star Ambulatory Assessment. Image adapted from Muntoni F, et al. *PLoS One*. 2019;14:e0221097, licensed under a CC-BY 4.0 Creative Commons license; doi.org/10.1371/journal.pone.0221097.

^{1.} Stimpson G, et al. Eur J Paediatr Neurol. 2024:53:123–130; 2. Muntoni F, et al. PLoS One. 2019;14:e0221097; 3. Ayyar Gupta V, et al. PLoS One. 2023;18:e0283669; 4. Cantor Fitzgerald Research. Industry Report - Muscling Up: Deep Dive Into DMD - Part 2. May 28, 2025.

What ordinal tasks are included in NSAA?

North Star Ambulatory Assessment (NSAA) tasks:

Stand

Stand barefoot for as long and still as possible (no external support)

Walk

Walk forward barefoot (long enough to observe gait)

Rise from chair

Stand up from a seated position in a chair with arms crossed

Ascend step (right and left sides)

Step onto a box (≥15 cm high)

Descend from step (right and left sides)

Step down from the box (≥15 cm high) facing forwards

Sit up from lying down

Lie flat on the floor with arms by side and move to a sitting position (without turning towards the floor or using both hands)

Run

Run as fast as possible for about 10 meters

Stand

Stand on leg (right and left sides) Stand on one leg with arms down for as long as possible

Jump

Jump as high as possible from standing with both feet together

Stand on heels

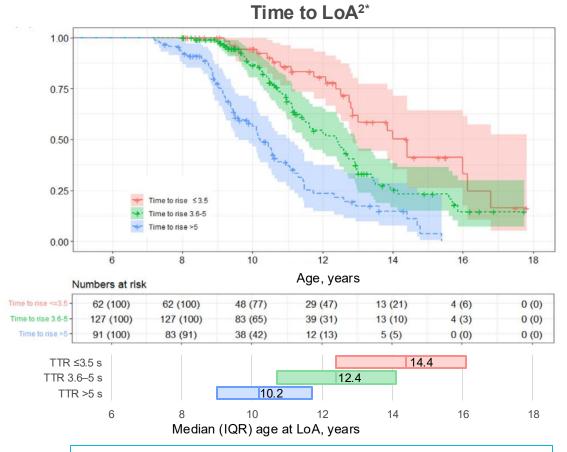
Lean back onto heels while barefoot (both feet lifted off ground towards shin)

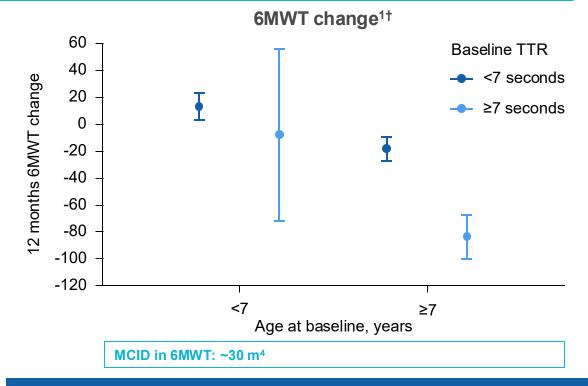
Rise from floor

Lay flat on back and stand up as quickly as possible (without Gower's maneuver)

Lift head

Lay flat on the floor with arms crossed across the chest and lift head, touching chin to chest, while keeping arms folded


Hop (right and left legs)


Stand on one leg and hop one-legged while barefoot

Do baseline functional tests predict disease progression? TTR

Time to rise (TTR): The time taken to stand from lying face up on the ground¹

Prolonged time to rise from floor at baseline suggests an increased risk of earlier LoA²

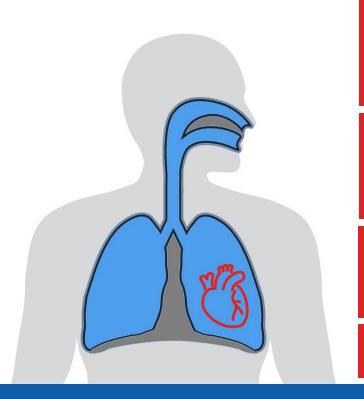
MCID in TTR velocity over 12 months: 0.023 rise per second³

6MWT, 6-minute walk test; IQR, interquartile range; LoA, loss of ambulation; MCID, minimum clinically important difference; TTR, time to rise.

*Image reproduced from Zambon AA, et al. Dev Med Child Neurol. 2022;64:979–988, licensed under a CC-BY 4.0 Creative Commons license; doi: 10.1111/dmcn.15176.

[†]Image adapted from Mazzone ES, et al. *PLoS One*. 2016;11:e0151445, licensed under a CC-BY 4.0 Creative Commons license; doi: 10.1371/journal.pone.0151445.

^{1.} Mazzone ES, et al. PLoS One. 2016;11:e0151445; 2. Zambon AA, et al. Dev Med Child Neurol. 2022;64:979–988; 3. Duong T, et al. J Neuromuscul Dis. 2021;8:939–948; 4. McDonald CM, et al. Muscle Nerve. 2013;48:343–356.


How do cardiopulmonary complications drive outcomes in DMD?

Pulmonary

Progressive loss of muscle strength leads to complications such as ineffective cough, need for nocturnal hypoventilation, sleep disordered breathing, and ultimately, daytime respiratory failure¹

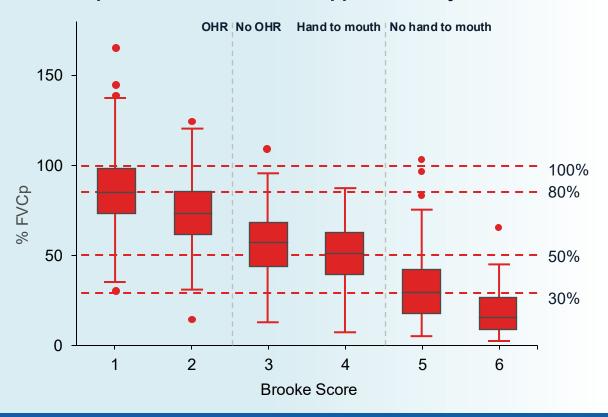
Non-invasive and invasive ventilation are eventually required^{1,2}

Respiratory muscle weakness tends to occur gradually over time in individuals with DMD, and compromised respiratory function (FVC <1 L) is a reliable prognostic indicator of mortality^{1,3}

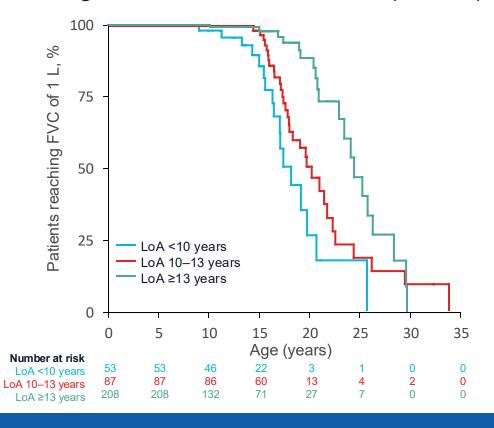
Cardiac

Lack of dystrophin in the heart manifests as cardiomyopathy characterized by widespread fibrosis of the left ventricular wall.^{1,4} Cardiomyopathy is evident in approximately 60% of individuals with DMD aged 10 years, and nearly all individuals over 18 years of age⁵

As the disease progresses, arrhythmias develop, and end-stage heart failure typically occurs in the 3^{rd} or 4^{th} decade of life.^{6,7} LVEF decreases 1–3% per year, and reductions \geq 3% correlate with increased risk of cardiac mortality⁸

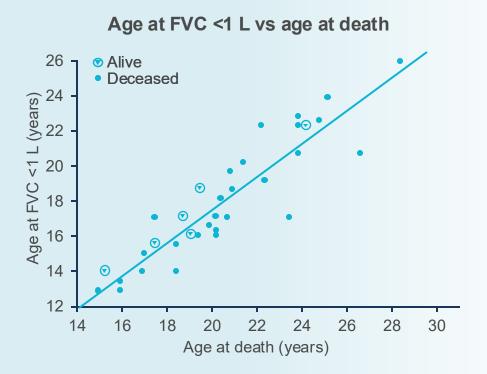

Early detection of cardiomyopathy is challenging, due to a long subclinical phase of ventricular dysfunction and difficulties in performing cardiovascular assessment in non-ambulatory individuals^{7,9}

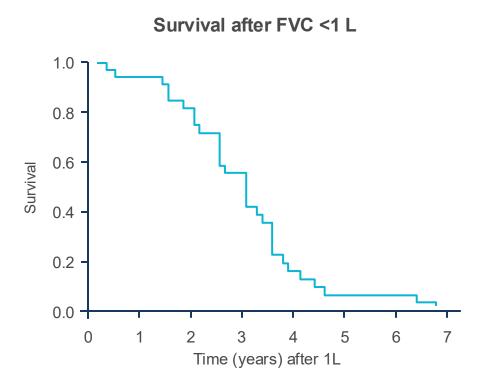
The severity of cardiomyopathy does not appear to correlate with the severity of skeletal muscle symptoms⁸


Cardiorespiratory complications are a leading cause of death amongst individuals with DMD¹

Does loss of pulmonary function correlate with functional decline in DMD?

%FVCp correlates with Brooke upper extremity function score^{1*}




Age at FVC <1 L correlates with LoA (P<0.0001)^{2†}

Pulmonary function loss correlates with general disease state in DMD¹

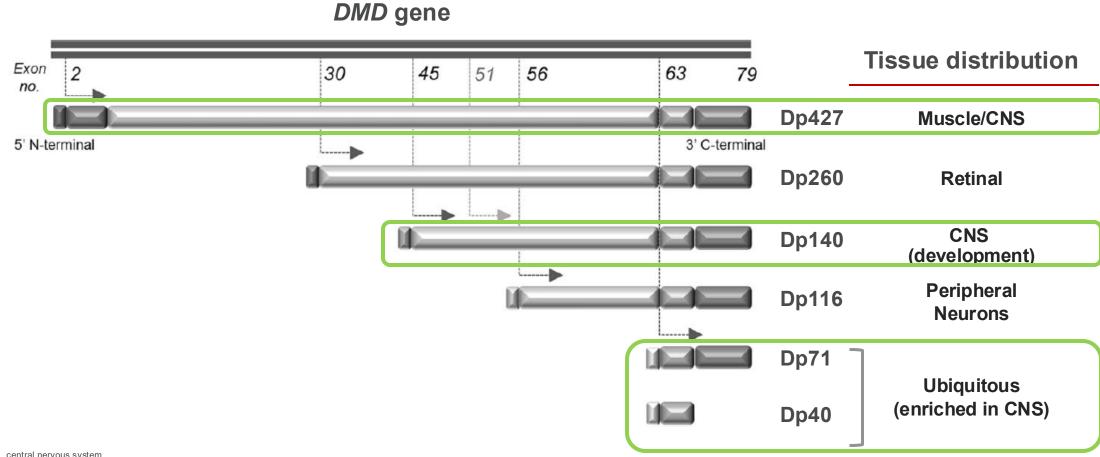
Is FVC <1 L a prognostic indicator of mortality?

The median survival of individuals who have reached FVC <1 L is 3.1 years; the 5-year survival rate is 8%

What is the natural course of cardiovascular dysfunction in patients with DMD?

Early signs of cardiovascular dysfunction in DMD are not clinically apparent 1,2

Normal ventricular function


End-stage heart failure (death between 20–40 years)

Disease stage	Subclinical	Clinical	Detectable cardiac involvement
Age	First decade	Second decade	Third decade
Symptoms of heart failure present?	No classic symptoms of heart failure	Heart failure symptoms in minority of individuals	Symptoms of heart failure, palpitations, syncope in ~60% of individuals
Cardiovascular symptoms	 ECG abnormalities and conduction defects Cardiomyocyte hypertrophy Diastolic dysfunction Wall motion abnormalities 	 Progressive heart chamber dilation Apoptosis of cardiomyocytes Subendocardial fibrosis 	 Systolic dysfunction (dilated cardiomyopathy) Symptomatic conduction abnormalities Arrhythmic complications Detectable signs of cardiac dysfunction in 80–100% of individuals Sudden death

The optimal window for initiation of treatment is prior to the development of clinical heart failure¹

Which dystrophin isoforms are expressed in the CNS?

The *DMD* gene has multiple isoforms with varying tissue expression patterns that are believed to play unique roles during embryogenesis and in adulthood¹

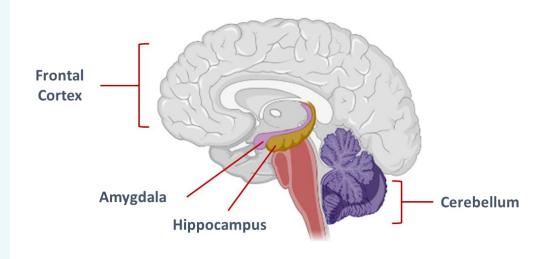

CNS, central nervous system.

Image adapted from Maresh K, et al. Brain 2023;146:252–265, licensed under a CC-BY 4.0 Creative Commons license; doi.org/10.1093/brain/awac048.

^{1.} Hildyard JCW, et al. Wellcome Open Res. 2020;5:76.

What diverse functions do dystrophin isoforms perform in the brain?

- Dystrophin is enriched in the cortex, amygdala, hippocampus, and cerebellum¹
 - Dp427 is involved in recruitment of GABA_A receptors in inhibitory neurons^{1–3}
 - Dp140 is particularly expressed during fetal development and may play a role in cognitive functioning, as well as coordination and motor performance¹⁻⁴
 - In a retrospective analysis of 459 individuals with DMD, those who lack Dp140 had lower grip strength and pinch strength, and reduced respiratory function (FVC) than those with Dp140 present, across all age groups⁵
 - Dp71 plays key roles in neuronal and glial cell function 1,2

Dysregulation of excitatory/inhibitory signaling in these regions via lack of dystrophin isoforms correlates with neuropsychiatric manifestations of DMD^{1,3}

^{1.} Maresh K, et al. Brain. 2023;146:252–265; 2. Hendriksen RGF, et al. Front Cell Neurosci. 2016;10:174; 3. Vaillend C, et al. Nat Commun. 2025;16:1298; 4. Chesshyre M, et al. J Cachexia Sarcopenia Muscle. 2022;13:1360–1372;

What neuropsychiatric symptoms might be observed in DMD?

Approximately 50% of individuals with DMD experience neuropsychiatric symptoms ^{1,2}
Neuropsychiatric symptoms of DMD are not secondary to muscle disease¹

Neuropsychiatric comorbidities in individuals with DMD³

Comorbidity	Approximate Prevalence (%)
Intellectual disability Epilepsy Autism	19–35 2–12 20
Internalizing problems Depression Anxiety OCD	24–34 17–27 24–29 5–14
Externalizing problems ADHD	15 12–32
Reading disability	40–50

Location of the mutation in the *DMD* gene influences the likelihood and severity of neuropsychiatric symptoms, depending on the impact on the different dystrophin isoforms^{1,3}

- Intellectual function is linked to the integrity of the Dp140 and Dp71 dystrophin isoforms¹
- Neuropsychiatric manifestations such as ASD are seen across the spectrum of DMD mutations, suggesting that the full-length Dp427 isoform is implicated¹
- Anxiety may be related to a lack of the Dp427 isoforms, exacerbated by a loss of Dp140¹
- ADHD may be associated with a lack of all three CNS isoforms: Dp427, Dp140 and, Dp711

Neuropsychiatric manifestations of DMD are not thought to be progressive, unlike those seen in muscle³⁻⁵

^{1.} Vaillend C, et al. Nat Commun. 2025;16:1298; 2. Maresh K, et al. Brain. 2023;146:252–265; 3. Naido o M, Anthony K. Molecular Neurobiology. 2020;57:1748–1767; 4. Hendriksen RGF, et al. Front Cell Neurosci. 2016;10:174;

^{5.} Chamova T, et al. Balkan J Med Genet. 2013;16:21-30.