

Module 4
What clinical phenotypes are seen in myotonic dystrophy type 1 (DM1)?

Module summary

DM1 presents with varying disease phenotypes across the age continuum¹⁻³

Phenotypes can be categorized as congenital, childhood, adult, or mild/late-onset adult DM11-3*

Congenital DM1 is the most severe form of DM1 and age at symptom onset is <1 month^{1,2,4,5}

Newborns typically have complications including hypotonia, immobility, weak cry, respiratory and cognitive difficulties, and EDS^{2,3,5,6}

In childhood DM1, age at symptom onset is 1 month–20 years¹

Children present with subtle facial weakness, cognitive defects, intellectual impairment, psychosocial issues, and incontinence²

In adult DM1, age at symptom onset is 20–40 years¹

Around 75% of individuals develop symptoms in their 2nd–4th decade of life, presenting with highly variable features and multi-organ involvement^{4,7}

Mild/late-onset DM1 can occur anytime >40 years of age, and individuals may have fully active lives 1,3

Individuals often present with mild myotonia, muscle weakness, and cataracts^{1,2}

DM1, myotonic dystrophy type 1; EDS, excessive daytime sleepiness.

^{*}There is currently no standard on the classifications of DM1.

^{1.} De Antonio M, et al. *Rev Neurol (Paris*). 2016;172:572–580; 2. Ho G, et al. *World J Clin Pediatr*. 2015;4:66–80; 3. Bird TD. Myotonic Dystrophy Type 1. 1999 Sep 17 [Updated 2021 Mar 25]. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022; 4. Wenninger S, et al. *Front Neurol*. 2018;9:303; 5. Barbe L, et al. *Am J Hum Genet*. 2017;100:488–505; 6. Lanni S, Pearson CE. *Neurobiol Dis*. 2019;132:104533; 7. Thomton CA. *Neurol Clin*. 2014;32:705–719.

How do clinical phenotypes vary within DM1?

Phenotype*	Age of onset	Clinical manifestations ^{1,2}	Life expectancy
Congenital DM1 ^{1,2}	<1 month ¹	 Hypotonia Respiratory distress Cognitive defects Motor and developmental delays Feeding difficulties 	45 years [†] (30–40% mortality rate within neonatal period) ²
Childhood DM1 ¹	1 month–20 years¹	Facial weaknessCognitive defectsPsychosocial issuesIncontinence	~60 years ^{2†}
Adult DM1 ^{1–3}	20–40 years ¹	 Myotonia Muscle weakness Cognitive defects Cataracts Conduction defects Insulin resistance Respiratory failure 	Up to 55 years ³
Late-onset DM1¹⁻³	>40 years ¹	Mild myotoniaCataracts	60 years to normal ³

DM1 presents with varying disease phenotypes across the age continuum¹⁻³

^{*}There is currently no standard on the classifications of DM1. †Mean. DM1, myotonic dystrophy type 1.

^{1.} De Antonio M, et al. Rev Neurol (Paris). 2016;172:572–580; 2. Ho G, et al. World J Clin Pediatr. 2015;4:66–80; 3. Bird TD. Myotonic Dystrophy Type 1. 1999 Sep 17 [Updated 2021 Mar 25]. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022.

What are the key features of congenital DM1?

Molecular pathology

- DMPK CTG repeat expansion size ≥1,000 almost always due to maternal transmission^{1–3}
- riphasic disease course:
 severe, global spliceopathy
 at birth, followed by period
 of improvement despite
 large CTG expansions. In
 adolescence, some
 maintain improved
 spliceopathy and others
 revert to severe
 spliceopathy⁴

Clinical presentation

- Prenatal symptoms include polyhydramnios and reduced fetal movement⁵
- Neonates are often born preterm with the following distinct complications: hypotonia, immobility, bilateral talipes, contractures, arthrogryposis, facial dysmorphia, hyporeflexia, weak cry, sucking, respiratory and cognitive difficulties, and EDS^{2,3,5,6}
- Neonatal symptoms may improve and stabilize, then progress during young adulthood^{3,4}
- Intensive intervention at birth is commonly required⁷

Morbidity

- Surviving infants can initially experience gradual improvements in motor function and reach motor and cognitive milestones with some delay; strength typically remains stable until adolescence, when deterioration becomes evident^{1,3}
- In young adults, rapid, increasing muscle weakness may occur³

Mortality

- 30–40% mortality rate within the neonatal period³
- The average life expectancy is 45 years³
- Mortality from respiratory failure is common⁶

Congenital DM1 is the most severe form of DM1 and age at symptom onset is <1 month.^{1–3,8}

Neonates are often born preterm with distinct neuromuscular, respiratory, and cognitive complications^{2,3,5,6}

What are the key features of childhood DM1?

Molecular pathology

8

 DMPK CTG repeat expansion size of >800^{1,2}

Clinical presentation

- Children present with subtle facial weakness, cognitive defects, intellectual impairment, psychosocial issues, and incontinence²
- Neurocognitive symptoms typically present prominently at around the age 10, and may be recognized earlier than muscular symptoms¹
- Juveniles may show typical muscular and non-muscular symptoms of adult-onset DM1 (distal weakness, clinical myotonia, cardiac or GI symptoms)¹

Morbidity

- Children (aged 1–10 years) may have relatively normal motor development early on, and the age of occurrence of the first clinical signs is variable^{1,2}
- Juveniles (aged 10–20 years) gradually progress to the adult phenotype, with individuals developing muscular and non-muscular symptoms such as muscle weakness and myotonia, GI symptoms, and cardiac involvement, while retaining the neurocognitive symptoms developed in childhood 1,2

Mortality

 Average life expectancy of ~60 years²

In childhood DM1, age at symptom onset is 1 month–20 years, and individuals present with subtle facial weakness, cognitive defects, intellectual impairment, psychosocial issues, and incontinence^{2,3}

What are the key features of adult DM1?

Molecular pathology

 DMPK CTG repeat expansion size of 50–1.000^{1–3}

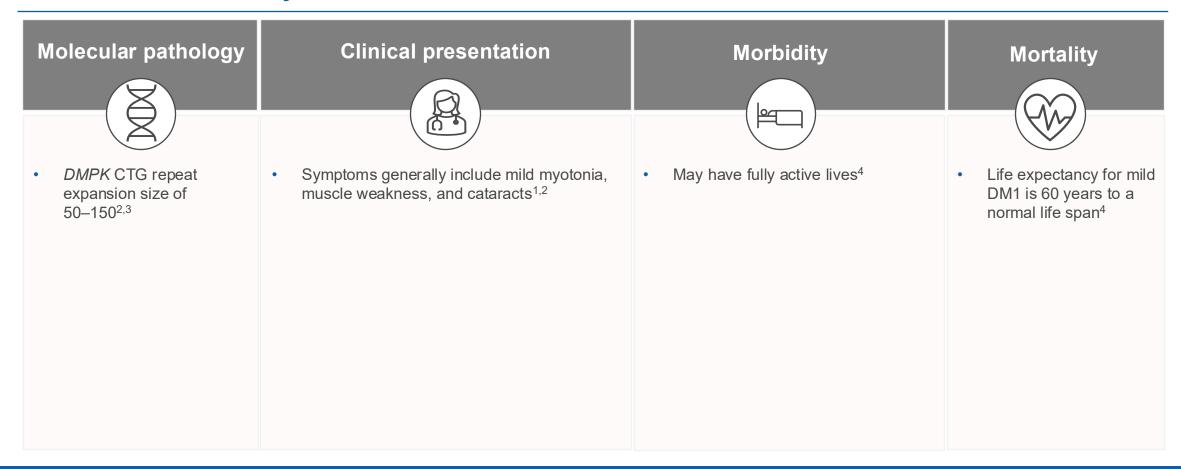
Clinical presentation

- Around 75% of individuals develop symptoms in their 2nd–4th decade of life,⁴ presenting with highly variable features and multi-organ involvement³
- Adult-onset DM1 is often characterized by a combination of symptoms, including facial weakness, ptosis, grip myotonia, and distal muscle weakness with atrophy, cognitive impairment, cataracts, diabetes mellitus, fatigue, EDS, GI disturbances, and cardiac conduction symptoms^{1–3}

Morbidity

- Muscle weakness is reported by >45% of individuals with the adult DM1 phenotype³
- Chronic respiratory impairment is the primary cause of morbidity⁵

Mortality


- Death typically occurs by 65 years of age^{6,7}
- Chronic respiratory impairment is the primary cause of mortality⁵

In adult DM1, age of symptom onset is 20–40 years, and presentation is highly variable 1,3

CTG, cytosine—thymine—guanine; DM1, myotonic dystrophy type 1; *DMPK*, dystrophia myotonica protein kinase; EDS, excessive daytime sleepiness; GI, gastrointestinal.

1. De Antonio M, et al. *Rev Neurol (Paris)*. 2016;172:572–580; 2. Ho G, et al. *World J Clin Pediatr*. 2015;4:66–80; 3. Wenninger S, et al. *Front Neurol*. 2018;9:303; 4. Thornton CA. *Neurol Clin*. 2014;32:705–719; 5. MDF. Consensus-based Care Recommendations for Adults with Myotonic Dystrophy Type 1. Accessed February 14, 2025. https://www.myotonic.org/sites/default/files/pages/files/MDF_Consensus-basedCareRecsAdultsDM1_1_21.pdf; 6. de Die-Smulders CE, et al. *Brain*. 1998;121:1557–1563; 7. Bird TD. Myotonic Dystrophy Type 1. 1999 Sep 17 [Updated 2021 Mar 25]. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022.

What are the key features of mild/late-onset DM1?

Mild/late-onset DM1 can occur anytime >40 years of age, usually presenting with mild myotonia, muscle weakness, and cataracts 1,2

CTG, cytosine-thymine-guanine; DM1, myotonic dystrophy type 1; DMPK, dystrophia myotonica protein kinase.

^{1.} De Antonio M, et al. Rev Neurol (Paris). 2016;172:572–580; 2. Ho G, et al. World J Clin Pediatr. 2015;4:66–80; 3. Wenninger S, et al. Front Neurol. 2018;9:303;

^{4.} Bird TD. Myotonic Dystrophy Type 1. 1999 Sep 17 [Updated 2021 Mar 25]. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022.