
Module 1 What is myotonic dystrophy type 1 (DM1)?

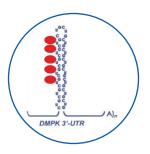
Module summary

DM1 is a rare, progressive, genetic, neuromuscular disease with high morbidity and early mortality^{1–5}

DM1 is a multi-system disease that presents with muscular and non-muscular symptoms⁶

DM1 is inherited in an autosomal dominant manner¹⁰

Intergenerational transmission can lead to increased expansion length, causing earlier onset and increasing disease severity^{6,11}


DM1 is caused by expansions in an unstable CTG repeat region in the *DMPK* gene⁷

In individuals with DM1, the DMPK gene contains ≥50 CTG repeats, compared with 5–34 in unaffected individuals⁸

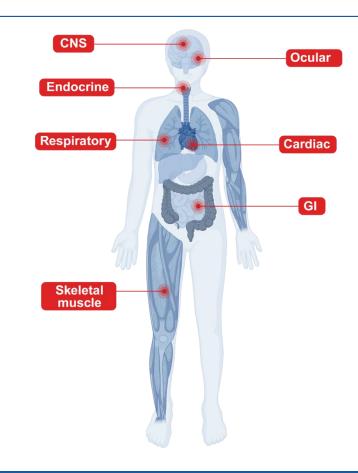
CTG repeat length varies between different tissues and increases with age^{6,12,13}

This contributes to the progressive and heterogeneous nature of DM1^{6,12,13}

Mutant *DMPK* mRNA forms a hairpin structure that sequesters MBNL proteins leading to spliceopathy⁷

Spliceopathy is the widespread disruption of RNA splicing^{7,9}

DM1 is the most common adult-onset muscular dystrophy^{1,14}


DM1 occurs in approximately 9.27 individuals per 100,000 worldwide¹

CTG, cytosine-thymine-guanine; DM1, myotonic dystrophy type 1; DMPK, dystrophia myotonica protein kinase; MBNL, muscleblind-like; mRNA, messenger ribonucleic acid.

1. Liao Q, et al. Neuroe pidemiology. 2022;56:163–73; 2. Mathieu J, et al. Neurology. 1999;52:1658–1662; 3. De Antonio M, et al. Rev Neurol (Paris). 2016;172:572–580; 4. Hagerman KA, et al. Muscle Nerve. 2019;59:457–464; 5. Wenninger S, et al. Front Neurol. 2018;9:303; 6. Thornton CA. Neurol Clin. 2014;32:705–719; 7. López-Martínez A, et al. Genes (Basel). 2020;11:1109; 8. Chau A, Kalsotra A. Dev Dyn. 2015;244:377–390; 9. Pascual-Gilabert M, et al. Drug Discov Today. 2021, 26:1765–1772; 10. Myotonic Dystrophy Support Group. Accessed May 6, 2025. https://www.myotonicdystrophysupportgroup.org/how-is-myotonic-dystrophy-inherited/; 11. Harper PS, et al. Am J Hum Genet. 1992;51:10–16; 12. Thornton CA, et al. Ann Neurol. 1994;35:104–107; 13. Ashizawa T, et al. Neurology. 1993;43:2674–2678; 14. Savic-Pavicevic D, et al. BioMed Res Int. 2013;2013:391821.

What is DM1?

- DM1 is a rare, progressive, genetic, neuromuscular disease with high morbidity and early mortality^{1–5}
- DM1 is caused by expansions in an unstable CTG repeat region in the DMPK gene, leading to a widespread disruption of RNA splicing, known as spliceopathy, which drives the multi-system manifestations of the disease⁶
 - Muscular symptoms involve skeletal, cardiac, and smooth muscles, and non-muscular symptoms mainly affect the CNS, but can also include cataracts, male infertility, endocrine abnormalities, and a higher incidence of cancer^{4,5,7,8}

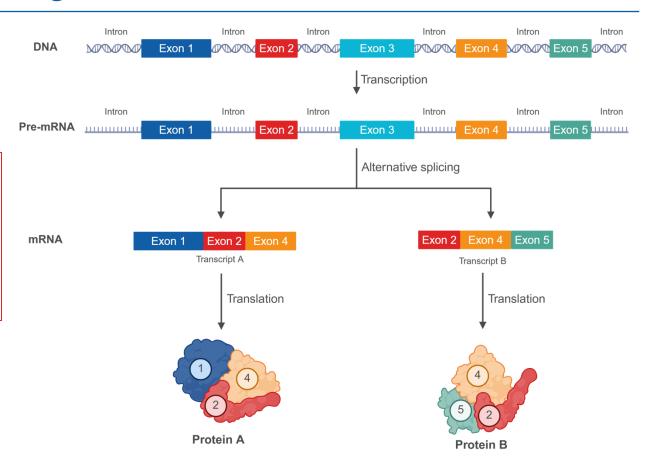
DM1 is a rare neuromuscular disorder with multi-systemic involvement, caused by widespread spliceopathy 1,3,6,7

^{1.} Liao Q, et al. Neuroepidemiology. 2022;56:163–173; 2. Mathieu J, et al. Neurology. 1999;52:1658–1662; 3. De Antonio M, et al. Rev Neurol (Paris). 2016;172:572–580; 4. Hagerman KA, et al. Muscle Nerve. 2019;59:457–464; 5. Wenninger S, et al. Front Neurol. 2018;9:303; 6. López-Martínez A, et al. Genes (Basel). 2020;11:1109; 7. Thomton CA. Neurol Clin. 2014;32:705–719; 8. Kim WB, et al. Korean J Urol. 2012;53:134–136.

What happens during RNA splicing?

2

Pre-mRNA is produced, consisting of protein-coding exons interspersed with non-coding introns¹

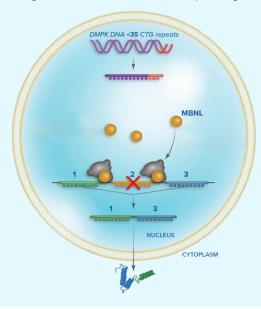

Splicing

Introns are removed, and exons are linked together to form mature mRNA¹

Alternative splicing can produce different mature mRNAs from the same pre-mRNA, and therefore different proteins from the same gene. 1,2 More than 90% of human genes are alternatively spliced and most are dynamically regulated in a cell type- or developmental stage-specific manner²

Translation

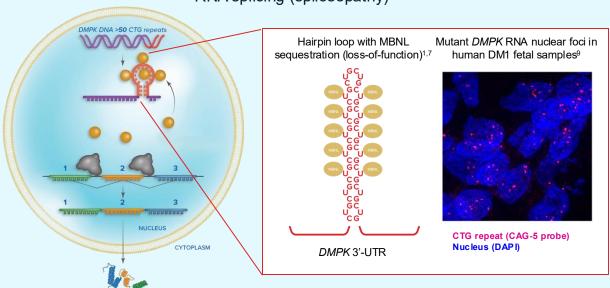
Mature mRNA is exported to the cytoplasm, where the ribosome translates the mRNA reading frame into a functional protein¹


Splicing removes introns to produce mature mRNA ready for translation; many genes are alternatively spliced to produce different mature mRNAs 1,2

What is the mechanism of spliceopathy in DM1?

Unaffected individuals

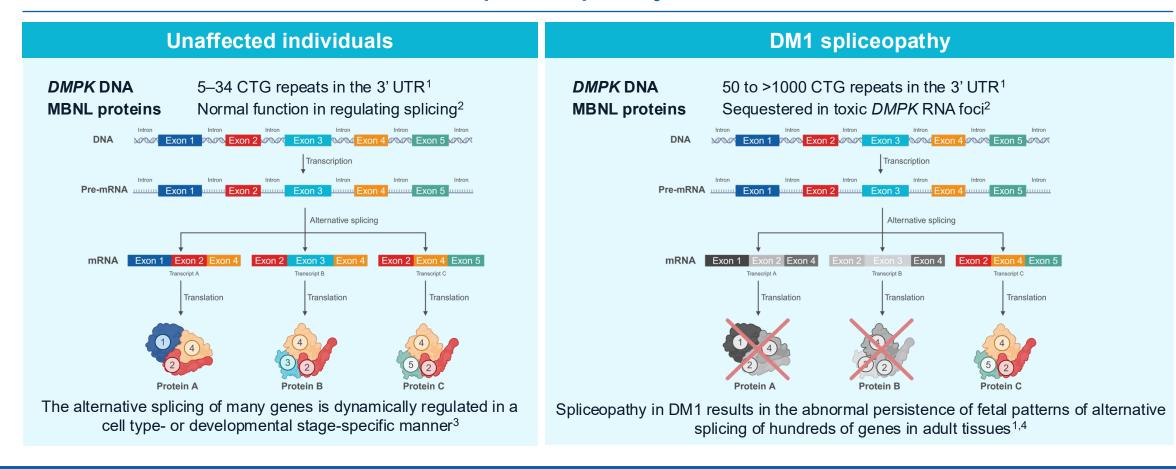
DMPK gene contains 5–34 CTG repeats; 35–49 repeats is considered 'premutation'¹


Under normal circumstances, the MBNL family of proteins are critical regulators of alternative splicing²

DM1 spliceopathy

DMPK gene contains ≥50 CTG repeats, and can have >1000^{1,3,4}

Mutant *DMPK* mRNA forms a stable hairpin structure that sequesters members of the MBNL family of proteins into toxic nuclear foci, leading to widespread dysregulation of RNA splicing (spliceopathy)^{1,2,5–8}



mRNA transcribed from the mutated *DMPK* gene forms stable hairpin loops that sequester MBNL proteins and form nuclear foci^{1,5,6,8}

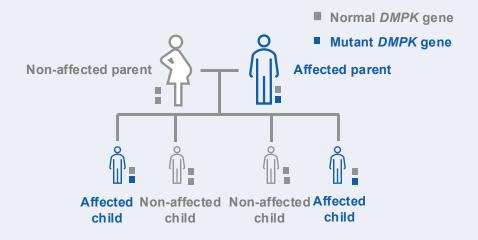
CAG, cytosine-adenine-guanine; CTG, cytosine-thymine-guanine; DAPI, 4',6-diamidino-2-phenylindole; DMPK, dystrophia myotonica protein kinase; DM1, myotonic dystrophy type 1; MBNL, muscle blind-like; mRNA, messenger ribonucleic acid; UTR, untranslated region. Image of nuclear foci from Michel L, et al. *PLoS One* 2015;10:e0137620, licensed under a CC-BY 4.0 Creative Commons license; doi:10.1371/journal.pone.0137620. Spliceopathy images used with permission of Sage Publications, from Berglund JA, et al. *J Neuromuscul Dis.* 2025;2214360 2251365101. Epub ahead of print; permission conveyed through Copyright Clearance Center, Inc. Images show a simplified representation of spliceopathy in individuals from the DM1 and unaffected individuals; for illustrative purposes only.

1. Chau A, Kalsotra A. *Dev Dyn.* 2015;244:377–390; 2. López-Martínez A, et al. *Genes (Basel).* 2020;11:1109; 3. Gutierrez Gutierrez G, et al. *Neurologia (Engl Ed).* 2020;35:185–206; 4. Thornton CA. *Neurol Clin.* 2014;32:705–719; 5. Davies BM, et al. *Proc Natl Acad Sci USA.* 1997;94:7388–7393; 6. Napierala M, Krzyzosiak WJ. *J Biol Chem.* 1997;272:1079–1085; 7. Misra C, et al. *Adv Neurobiol.* 2018;20:213–238; 8. Pascual-Gilabeth M, et al. *Drug Discov Today.* 2021;26:1765–1772; 9. Michel L, et al. *Pcos One* 2015;10:e0137620.

What is the mechanism of spliceopathy in DM1?

Sequestered MBNL proteins cannot perform their normal function in splicing, so the expression of many genes throughout the body is dysregulated 1,2,4

CTG, cytosine-thymine-guanine; DM1, myotonic dystrophy type 1; DMPK, dystrophia myotonica protein kinase; DNA, deoxyribonucleic acid; MBNL, muscleblind-like; mRNA, messenger ribonucleic acid; RNA, ribonucleic acid; UTR, untranslated region. Figure created in BioRender.^{3,5}


Graphic shows a simplified representation of alternative splicing; for illustrative purposes only.

^{1.} Chau A, Kalsotra A. Dev Dyn. 2015;244:377–390; 2. López-Martínez A, et al. Genes (Basel). 2020;11:1109; 3. Choi S, et al. Exp Mol Med. 2023;55:755–766; 4. Pascual-Gilabert M, et al. Drug Discov Today. 2021;26:1765–1772; 5. Alberts B, et al. Mol Biol Cell. 4th ed New York: Garland Science; 2002.

How is DM1 inherited?

DM1 is inherited in an autosomal dominant manner¹

Genetic counselling is recommended for those exhibiting clinical signs of DM1 and for at-risk family members to enable them to make an informed decision on proceeding with genetic testing²

Offspring have a 50% chance of inheriting a mutant *DMPK* gene¹

The expanded *DMPK* CTG region is highly unstable and increases in length during intergenerational transmission³

This phenomenon is known as anticipation – increasing disease severity and earlier age of onset in successive generations.⁴ The direction and size of intergenerational change in CTG expansion depend on both parental repeats and the sex of the transmitting parent^{5–8}

Longer CTG repeats are generally inherited from mothers, contributing to congenital DM1^{6,9,10}

Juvenile, adult, and lateonset forms of DM1 are generally transmitted by fathers^{6,9}

Individuals with 35–49 repeats are asymptomatic, but may transmit longer CTG expansions to their offspring¹⁰

On average, the CTG expansion increases by >200 repeats during intergenerational transmission^{3,11}

DM1 is inherited in an autosomal dominant manner. Intergenerational transmission can lead to increased expansion length, causing earlier onset and increasing disease severity 3,4

CTG, cytosine-thymine-guanine; DM1, myotonic dystrophy type 1; DMPK, dystrophia myotonica protein kinase gene.

- 1. Myotonic Dystrophy Support Group. Accessed May 6, 2025. https://www.myotonicdystrophysupportgroup.org/how-is-myotonic-dystrophy-inherited/; 2. Savic Pavicevic D, et al. BioMed Res Int. 2013;2013:391821;
- 3. Thomton CA. Neurol. Clin. 2014;32:705–719; 4. Harper PS, et al. Am J Hum Genet. 1992;51:10–16; 5. Rakocevic-Stojanovic V, et al. Eu J Neurol. 2004;12:235–237; 6. Martorell L, et al. Prenat Diagn. 2007;27:68–72;
- 7. Brunner HG, et al. Am J Hum Genet. 1993;53:1016–1023; 8. Lavedan C, et al. Am J Hum Genet. 1993;52:875–883; 9. De Temmerman N, et al. Am J Hum Genet. 2004;75:325–329; 10. Gutierrez Gutierrez G, et al. Med Clin (Barc). 2020;153:82.e1-82.e17; 11. Redman JB, et al. JAMA. 1993;269:1960–1965.

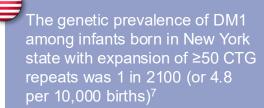
What is the impact of somatic mosaicism in DM1?

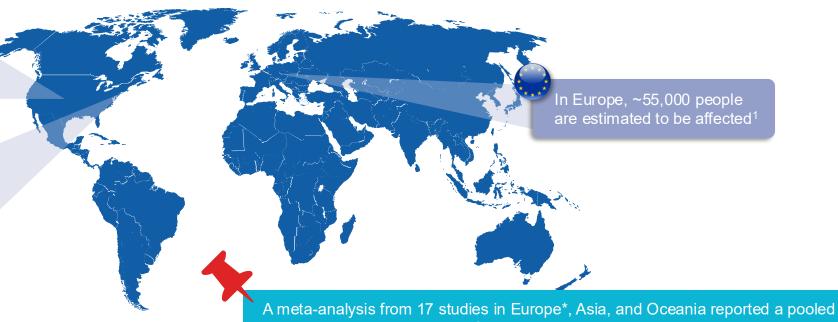
Instability of the expanded *DMPK* CTG region leads to variable repeat length in different tissues, a concept known as somatic mosaicism^{1–3}

In DM1, greater expansion of CTG repeat lengths are seen in non-dividing cells (e.g. skeletal muscle, heart, brain) than in proliferating cells of the hematopoietic system¹⁻⁴

 Somatic mosaicism in DM1 is tissue specific, age dependent, and biased toward further expansion during aging, contributing to the progressive and heterogeneous nature of the disease^{1–3}

CTG repeats in skeletal muscle of individuals with DM1 expand to >2000 repeats by age 20¹


In individuals aged >40 years, the average repeat length in skeletal muscle is >4000 repeats, more than 3- to 25-fold larger than in blood¹


CTG repeat length varies between different tissues and increases with age, contributing to the progressive and heterogeneous nature of DM1¹⁻³

What is the prevalence of DM1?

• Prevalence estimates for DM1 can vary greatly between different countries and ethnic groups, and a true estimate is difficult to achieve due to a significant delay in diagnosis for many individuals 1-5

A meta-analysis from 17 studies in Europe*, Asia, and Oceania reported a pooled estimated global prevalence of **9.27 cases per 100,000 individuals**, with estimates of individual studies ranging from 0.37 to 36.29 cases per 100,000 ¹

DM1 is the most common adult-onset muscular dystrophy, occurring in approximately 9.27 individuals per 100,000 worldwide^{1,8}

^{*}Includes studies from Southwestern Norway, Northern Spain, Serbia, Western Sweden, Republic of Ireland, Rome (Italy), Finland, Northern England, Belgrade (Serbia), Northern Ireland, Italy, Western Sweden, and Istra (Croatia). CTG, cytosine-thymine-quanine; DM1, myotonic dystrophy type 1.

 $^{1.\} Liao\ Q,\ et\ al.\ \textit{Neuroepidemiology}.\ 2022; 56:163-173;\ 2.\ Yotova\ V,\ et\ al.\ \textit{Hum\ Genet}.\ 2005; 117:177-187;\ 3.\ Ashizawa\ T,\ Epstein\ HF.\ \textit{Lancet}\ .1991; 338:642-643;\ 4.\ Hsiao\ KM,\ et\ al.\ \textit{Neuroepidemiology}.\ 2003; 22:283-289;\ description of\ \textit{Ashizawa}\ T,\ \textit{Epstein\ HF}\ .$

^{5.} Hilbert JE, et al. *J Neurol.* 2013;260:2497–504; 6. Ashizawa T, et al. *Neurol Clin Pract.* 2018;8:507–520; 7. Johnson NE, et al. *Neurology.* 2021;96:e1045–e1053; 8. Savic-Pavicevic D, et al. *BioMed Res Int.* 2013;2013:391821.